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Abstract

compared to other genes.

regulation across prokaryotes.

Regulatory interactions

Background: Tests for the evolutionary conservation of associations between genes coding for transcription factors
(TFs) and other genes have been limited to a few model organisms due to the lack of experimental information of
functional associations in other organisms. We aimed at surmounting this limitation by using the most co-occurring
gene pairs as proxies for the most conserved functional interactions available for each gene in a genome. We then
used genes predicted to code for TFs to compare their most conserved interactions against the most conserved
interactions for the rest of the genes within each prokaryotic genome available.

Results: We plotted profiles of phylogenetic profiles, p-cubic, to compare the maximally scoring interactions of TFs
against those of other genes. In most prokaryotes, genes coding for TFs showed lower co-occurrences when
compared to other genes. We also show that genes coding for TFs tend to have lower Codon Adaptation Indexes

Conclusions: The co-occurrence tests suggest that transcriptional regulation evolves quickly in most, if not all,
prokaryotes. The Codon Adaptation Index analyses suggest quick gene exchange and rewiring of transcriptional
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Background
Using data derived from literature on experimen-
tally determined molecular interactions, previous work
suggested that gene and gene product relationships
brought about through transcriptional co-regulation in
Escherichia coli K12 MG1655, have loose evolutionary
conservation [1-3]. Such results suggest that transcrip-
tional regulation might evolve quickly, an idea that gains
support from other results, such as those suggesting that
at least half of the transcription factors (TFs) present in E.
coli might come from horizontal gene transfer [4].
Profiles of phylogenetic profiles, p-cubic, can provide
information about the quality of functional interaction
datasets [5], and about the evolutionary conservation of
known functional interactions [3]. As mentioned in the
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paragraph above, the work on evolutionary conservation
has relied on experimentally determined interactions,
such as those gathered in knowledge databases like Reg-
ulonDB [6] and EcoCyc [7]. Knowledge databases are
not readily available for most other genomes. It is there-
fore not possible to further test previous results in
other genomes in the same way. While TFs might be
determined by the presence of DNA-binding domains
in encoded proteins, their target genes, for example,
would not be known. However, the co-occurrence across
genomes of genes coding for TFs with other genes
can be measured, and we reasoned that maximally
co-occurring genes might still reflect the evolutionary
stability of interactions between TFs and other genes
in any given genome (see further explanations under
Results and Discussion).

In this work we show evidence suggesting that the
most evolutionarily conserved interactions for the sets of
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predicted TFs across a wide sample of publicly available
prokaryotic genomes are less conserved than the most
conserved interactions among all other gene products.

Methods

Genomes and phylogenetic profiles

Using a web-based tool [8], we selected a non-redundant
genome dataset filtered using a genomic similarity score
[3,8,9] chosen to keep the equivalent of one genome per
represented species (GSSa = 0.90) out of the 2733
prokaryotic genomes available at the RefSeq database [10]
(ftp://ftp.ncbi.nih.gov/genomes/Bacteria/) by the end of
December 2013. We further filtered this non-redundant
genome dataset to keep genomes longer than 2.5 Mbp,
with at least 80 genes coding for transcription factors
other than sigma factors.

To build phylogenetic profiles, we used NCBI’s blastp
[11] to determine orthologs as reciprocal best hits
(RBHs) as described previously [12,13]. Each of the non-
redundant genome datasets above was compared against a
non-redundant genome dataset filtered at a GSSa thresh-
old of 0.75 to build phylogenetic profiles, a threshold pre-
viously shown to produce phylogenetic profiles with good
discrimination between genes coding for functionally
interacting proteins and genes coding for non-interacting
proteins [9]. Presence of a RBH was represented with 1,
absence with 0. We used mutual information (MI), mea-
sured in bits, to compare the similarity of phylogenetic
profiles [9,14]. The formula for MI is:

1 1
P;
MI =" Pjlog Bp,
i=0 j=0

1)

Profiles of phylogenetic profiles (p-cubic) [3,5], are
graphs representing the proportion of genes left at dif-
ferent thresholds of MI. Briefly, these graphs are anti-
cumulative plots showing the decline in the proportion
of pairs of genes left at increasing MI thresholds. Pairs
of genes whose interactions are highly conserved should
have higher MI than those with poorly conserved ones.
Therefore, if a group contains a higher proportion of
highly conserved interactions, their p-cubic line should
tend to drop at a slower rate than the p-cubic of a group
with less conserved interactions [see Figure one in [3]].
These graphs are very similar in concept to those pre-
sented previously by Date and Marcotte [15].

Transcription factors

Experimentally determined TF datasets were obtained as
follows: for Escherichia coli strain K12-MG1655 we down-
loaded the lists of predicted and manually curated TFs
from RegulonDB [6], for Bacillus subtilis strain 168 we
downloaded the lists of TFs from the DBTBS [16].
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To identify TFs in the rest of the genomes in our
study, we downloaded the lists of TF-related Pfam and
Superfamily identifiers from the DNA-Binding Domains
database (DBD) [17]. We then ran hmmer (version
3.1b1) [18] comparisons of all the annotated proteins
for each genome against the Hidden Markov Mod-
els of these domain families. The domain families
were extracted with the hmmfetch program from the
Pfam-A.hmm file from the Pfam database (version 27,
http://pfam.janelia.org/) [19], and from the Superfam-
ily hmmlib file (version 1.75; http://supfam.cs.bris.ac.uk/
SUPERFAMILY/downloads.html) [20]. For Pfam fami-
lies we used the hmmscan --cut_ga option which uses
the “gathering threshold” set for each family in Pfam.
For Superfamily we downloaded as many pre-annotated
genomes as available at the database. For other genomes
we set an hmmscan maximum domain e-value of 0.0001
(--domE 1e-4), then filtered out the hmmer results using
the ass3.pl script available from the Superfamily download
site. We ensured that this procedure was adequate by run-
ning a couple of the pre-annotated genomes and verifying
that we had the very same results.

Evaluation of p-cubic differences

To evaluate whether the p-cubic curves for non TF-coding
genes were above or below the p-cubic curves for TF-
coding genes within each organism, we divided the curves
into bins and calculated the difference between the non-
TF bin and its corresponding TF bin. The number of bins
(n in the equation below) was set to 20, because we found
that, in most of the genomes analyzed, bins thus produced
had enough data for the operations. We normalized this
value by the total number of bins. This operation yielded
what we call the delta p-cubic:

AP3 =

n
TF; — TF;
D @

i=1 "

Values of AP3 > 0 indicate that the p-cubic curve for
TF-coding genes fell below the curve for non TF-coding
genes, indicative of TFs forming looser associations than
other gene products. Values of AP3 < 0 indicate either
equal association strength (AP3 = 0), or TF-coding
genes forming stronger associations (AP3 < 0). After
filtering, this analysis was performed on 790 prokaryotes,
including some Archaea.

Codon Adaptation Index

We determined the Codon Adaptation Index (CAI) [21]
for each gene within each of the non-redundant genomes
chosen above (0.90 GSSa). The CAI compares the codon
usage of a protein-coding gene against the codon usage
of highly expressed genes (HXGs). The best examples of
HXGs are those coding for ribosomal proteins. To find
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ribosomal proteins we used the COG and arCOG riboso-
mal protein families described by Yutin et al. [22]. These
COGs and arCOGs were matched to their correspond-
ing bacterial and archaeal genomes and gene identifiers
using the files provided by the authors (ftp://ftp.ncbi.
nih.gov/pub/wolf/COGs/). If a genome in our database
was not in those files, we checked the COG annotations
provided with the genomes as downloaded from NCBI
and/or compared, using the rpsblast program (part of
NCBI's BLAST+ suite) [11], the encoded proteins of each
genome to the profiles for the appropriate COGs found
at the Conserved Domains Database database [23]. The
rpsblast program was run with soft-masking (-seg yes
-soft_masking true), a Smith-Waterman final alignment
(-use_sw_tback), and a maximum e-value threshold of
1 x 107 (-evalue Ie-6).

To calculate the codon usage tables of the HXGs (the
ribosomal protein-coding genes chosen above) of each
genome, we used the program cusp from the EMBOSS
software suite [24]. We then used these HXGs codon
usage tables to calculate the CAI for each protein-coding
gene within the appropriate genome using the cai pro-
gram also from the EMBOSS software suite.

Results and discussion

Top-scoring interactions in model organisms suggest that
both experimentally-known and predicted TFs have less
conserved interactions than other genes

Ideally, we would analyze the p-cubic of TFs and the genes
in their target transcription units. However, databases
containing enough literature-based data exist only for a
few model organisms. Therefore, we developed compu-
tational strategies for gathering data of sufficient quality
to perform these analyses across available genomes. We
needed two kinds of data: (a) TFs and (b) their target
genes.

Our strategy towards finding TFs consisted of down-
loading manually curated datasets [6,16], predictions pro-
duced by other authors [6,16,20], as well as comparing
the annotated proteins of each genome against previously
described DNA-binding Pfam and Superfamily domains
as described in the DBD database [17]. We kept only
the genomes containing at least 80 predicted TFs, where
predicted TFs were genes coding for proteins matching
the Pfam and Superfamily domains listed at the DBD
database. This procedure reduced our prokaryotic non-
redundant set from 950 to 857 (we provide tables of
predicted TFs across the full set of 950 genomes used in
this study as Additional files 1 and 2).

Once we found putative TFs in the genomes of inter-
est we still needed target genes (TGs). Properly finding
TGs can be quite a demanding task. However, we thought
that we could still compare the conservation of more
generic TF associations, not necessarily a TF gene to TG
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association, against the conservation of other gene asso-
ciations. To this end we used mutual information (MI)
as a measure of co-occurrence. We calculated the MI for
every pair of genes in each of the 750 genomes selected
above. For each gene, we selected its five top-scoring pairs
as representatives of its most conserved interactions. For
example, in E. coli K12, the gene IptD (gi|16128048) shows
MI values against the other 4138 protein-coding genes in
this genome ranging from 0 to 0.51, with the five top-
scoring ones being 0.43, 0.44, 0.46, 0.48, and 0.51. We used
these top-scoring values as representatives for the most
evolutionarily conserved interactions of this gene.

In our two model organisms, E. coli K12 MG1655 and B.
subtilis 168, the highest MI of genes coding for manually-
curated TFs shows a lower p-cubic than that for other
genes (Figure 1B and 1E). The same was true when we
used the genes coding for predicted TFs in the same
genomes (Figure 1C and 1F). This suggests that, even
though our predicted TFs do not completely agree with
the curated datasets (Figure 1A and 1D), they still pro-
vide enough information to test the conservation of TF
interactions against the interactions of other genes. Our
previous study on the evolutionary conservation of func-
tional interactions of E. coli K12 had found that the most
conserved regulon-related interaction was between TFs
and their TGs [3]. Here we found that the top-scoring
interactions for TFs have better conservation than the TF
to TG interactions (Figure 1). Being a rather small set,
the p-cubic curves for known TF/TG pairs is too noisy to
allow confident conclusions. Still, it is possible that top-
scoring interactions represent interactions beyond those
mediated by transcriptional regulation. However, top-
scoring interactions for TFs were still lower than those
for other genes, suggesting that TFs have more generic
evolutionary plasticity than other genes in these model
organisms.

The MI for both predicted and experimentally validated
TFs from B. subtilis does not show as strong a difference
to other genes as they do in E. coli. We do not have a
full explanation for this difference in results. It could be
that the interactions between TFs and target genes in B.
subtilis is closer in evolutionary conservation to those
of other genes. It could also be that the genomes in the
database do not represent enough information to show
the difference with enough emphasis. Finally, gene over-
annotations in B. subtilis, as estimated by the SwissProt
method proposed by Skovgaard et al. [25,26], is higher
for B. subtilis (16.6%) than for E. coli (5.32%). False genes
would necessarily have no orthologs in other genomes,
and their MI with other genes would necessarily be
zero. Thus, false genes might lower the p-cubic curve of
genes other than those coding for TFs (genes coding for
TFs would most probably be true genes because their
products match true protein domains).
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Figure 1 Comparing manually curated, and predicted transcription factors (TFs). Manually-curated TFs were obtained from RegulonDB [6] for
E. coliK12,and from DBTBS [16] for B. subtilis 168. Predictions were based on matches to Pfam and Superfamily DNA-binding domains reported at
the DBD [17]. (A, D) Venn diagrams comparing curated and predicted TFs. (B, E) P-cubic of curated TFs. (C, F) P-cubic of predicted TF-coding
genes. The p-cubic of any set of TF-coding genes is below the p-cubic of the corresponding set of other genes, showing that TF-coding genes have
lower co-occurrences than other genes. Since predicted TF-coding genes behave similarly to curated TF-coding genes, predicted TF-coding genes
might be enough to test if TF-coding genes in other prokaryotes have lower co-occurrences than genes coding for proteins other than TFs.

Top-scoring interactions suggest that TFs have less
conserved interactions than other genes among
prokaryotes

The results above show p-cubic comparisons suggest-
ing that TFs have less co-occurring, and therefore less
conserved, interactions than other genes in model organ-
isms (Figure 1). Since predicted TFs produced similar
results to those obtained with manually-annotated TFs,
we concluded that genes coding for predicted TFs in other
prokaryotes would yield appropriate results to evaluate if
TF-coding genes also show a tendency towards less evolu-
tionarily conserved interactions than other genes in other
prokaryotes.

To test for the conservation of functional associations
between TF-coding genes and other genes in prokary-
otes other than model organisms, we selected genomes
at least 2.5 Mbp in length from NCBI’s RefSeq database
(see Methods). We filtered small genomes because it is
well known that prokaryotes with reduced genomes tend
to lack TF-coding genes [27-29]. We also filtered out
redundant genomes using a previously published method
to cluster similar genomes and keeping only one as a

representative [8], and rejected genomes with less than
100 genes coding for predicted TFs (see Methods).

To summarize the results for each of the genomes cho-
sen above, we calculated a difference, AP3, between the
p-cubic curve for genes other than predicted TFs and the
p-cubic for predicted TFs (see Methods). A AP3 above
zero would indicate that the p-cubic for TF-coding genes
shows lower co-occurrence than the p-cubic of other
genes, while a AP3 below zero would indicate that TF-
coding genes have a higher tendency to co-occur, and
therefore contain more evolutionarily conserved interac-
tions than other genes. The cumulative curve of AP3s
shows that genes coding for predicted TFs have less co-
occurrence, and therefore proportionally fewer conserved
interactions than other genes in 780 of the 857 genomes
tested (91%; Figure 2), thus confirming that TF interac-
tions might evolve quickly in most, if not all prokaryotes.

Low CAls suggest that genes coding for TFs tend to be
horizontally transferred

Previous work has suggested that at least half of the TF-
coding genes of E. coli come from horizontal gene transfer
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Figure 2 AP3 between predicted TF-coding genes and other
genes across the prokaryotic genomes analyzed in this study. If
the p-cubic curve for genes coding for proteins other than TFs runs
above the p-cubic curve for TF-coding genes the AP3 will be positive.
Thus, a positive AP3 indicates less evolutionarily conserved
interactions for TF-coding genes. A negative AP3 would indicate the
opposite. The cumulative proportion shown here indicates that
TF-coding genes in approx. 91% of the genomes tested have less
conserved interactions than other genes.

(HGT) events [4]. This might be one of the reasons
why associations brought about via TFs evolve quickly
(another reason might be that operators, the sites in DNA
where TFs bind, have low information contents, meaning
that they can easily evolve [30]). To further test for the
possibility of TF-coding genes coming from HGT across
prokaryotes we calculated the Codon Adaptation Index
(CAI) for all the genes of the genomes under analysis.
We found that the CAI of TF-coding genes tends to be
lower than that of non-TF-coding genes in 809 of the
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Figure 3 Comparing the Codon Adaptation Index of predicted
transcription factor-coding genes and other genes across
prokaryotic genomes. This curve shows that TF-coding genes in
approx. 94% of the genomes tested had lower average CAl than other
genes, thus suggesting that TF-coding genes tend to be more
horizontally transferred than other genes.
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857 (94%) of the genomes containing at least 80 predicted
TFs (Figure 3). Furthermore, t-tests showed significant
differences between the CAls of non-TFs and TFs in 691
of the 857 genomes (80%), out of which 676 (98%) had
a positive statistical difference (p < 0.05; see Additional
files 1 and 2). Our results are also in agreement with pre-
vious work showing that genes predicted to have been
horizontally transferred are enriched in genes encoding
for proteins with DNA-binding functions [31].

While CAI alone might be insufficient for determin-
ing HGT [32-34], our results still suggest that TF-coding
genes might be frequently transferred among prokaryotes.

Conclusion

In this work we presented data across several prokary-
otic genomes suggesting that genes coding for TFs have
evolutionarily loose relationships with other genes, and
that genes coding for TFs have a tendency towards having
low Codon Adaptation Indexes compared to other gene
sets, suggesting that TF-coding genes are frequently hor-
izontally transferred. Overall, these results suggest that
transcriptional regulation evolves quickly among prokary-
otes, and that the evolution of transcriptional regula-
tion might be strongly tied to elements specializing in
horizontal gene transfer, like pathogenicity and other
genomic islands. It is therefore tempting to hypothesize
that genomic islands might be of main importance in the
evolution of transcriptional regulation.

Availability of supporting data

We provide predicted transcription factors across
prokaryotic genomes used in this study at: http://
microbiome.wlu.ca/TFs/
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calculations for all genomes available in the study.
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