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Analytical strategies for the marble burying
test: avoiding impossible predictions and
invalid p-values
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Abstract

Background: The marble burying test is used to measure repetitive and anxiety-related behaviour in rodents. The
number of marbles that animals bury are count data (non-negative integers), which are bounded below by zero and
above by the number of marbles present. Count data are often analysed using normal linear models, which include
the t-test and analysis of variance (ANOVA) as special cases. Linear models assume that the data are unbounded and
that the variance is constant across groups. These requirements are rarely met with count data, leading to 95%
confidence intervals that include impossible values (less than zero or greater than the number of marbles present),
misleading p-values, and impossible predictions. Transforming the data or using nonparametric methods are
common alternatives but transformations do not perform well when many zero values are present and
nonparametric methods have several drawbacks.

Findings: The problems with using normal linear models to analyse marble burying data are demonstrated and
generalised linear models (GLMs) are introduced as more appropriate alternatives.

Conclusions: GLMs have been specifically developed to deal with count and other types of non-Gaussian data, are
straightforward to use and interpret, and will lead to more sensible inferences.

Keywords: Autism, Count data, Generalised linear model, Marble burying test, Poisson, Pseudoreplication,
Reproducible research, Valproic acid

Background
The marble burying test is commonly used to quantify
anxiety, obsessive-compulsive, or repetitive behaviour in
rodents [1-3]. Performance on the marble burying test
is also associated with general digging behaviour [4-7],
and so the underlying construct being measured is still
unclear. Regardless, the typical protocol places 10–25
marbles in a cage containing sawdust or similar mate-
rial. The marbles are usually arranged in a grid pattern
and animals are allowed to explore the cage for a fixed
period of time—usually 30 minutes. The main outcome
is the total number of marbles buried under the saw-
dust, but other measures have been used such as the
latency to bury the first marble or the amount of time
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spent burying. The majority of analyses use normal lin-
ear models—of which the t-test, ANOVA, and regres-
sion are specific examples—to analyse the number of
marbles buried (Figure 1). Occasionally, nonparametric
methods are employed. Parametric analyses assume that
the data (or equivalently, the errors) take a certain dis-
tributional form. Choosing an appropriate distribution
from the many available is a decision made by the ana-
lyst, but invariably the normal or Gaussian distribution
is used, likely because neuroscientists are unaware that
other options exist.
Data derived from the marble burying test have sev-

eral properties that make the use of normal linear models
questionable. First, the data often contain censored obser-
vations. These occur when animals bury all of the marbles
present and therefore it is unknown whether the animals
would have buried more marbles had they been available.
Thus, the relationship between the underlying construct
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Figure 1 Relationship between statistical models. T-tests, ANOVA, regression, and ANCOVA are all specific examples of linear models and have the
same assumptions, including normally distributed data, homogeneity of variance, and independent observations. Generalised linear models include
all linear models, but also include models that can handle other types of data. The mean-variance relationship will depend on the specific model.
Note that all models assume that observations are independent [41].

(degree of anxiety/compulsiveness/digging) and the mea-
sured outcome (number of marbles buried) breaks down
once all the marbles are buried. Censored values can bias
estimates of treatment effects and lead to a loss of sensi-
tivity; for example, a treatment would appear ineffective
if animals in both the treated and control group bury
almost all of the marbles. If more marbles are used, then
the control group may bury more than the treated group.
Methods exist for analysing censored data but will not be
considered here because simply increasing the number of
marbles used or reducing the time that animals have to
bury them can remove, or greatly reduce, the number of
censored observations. Sugimoto and colleagues counted
the number of marbles buried at 10, 20, and 30 minutes
and showed how differences at early time points between
control and treated groups tend to diminish by 30minutes
[8]. At 10 minutes the lowest dose group (1mg/kg fluvox-
amine; Figure one in their paper) buried nearly three times
as many marbles as the control group, but by 30 minutes
they buried the same number. Thus, an incorrect conclu-
sion would have been reached if the final time point was
the only one examined. Santini also examined multiple
time points and differences between groups at 30 min-
utes were also smaller compared with earlier time points
(Figure two A in their paper) [9]. The number of marbles
and the time the animals have to bury them should be
optimised to ensure that the test has good sensitivity and
to avoid censored observations.
Second, the number ofmarbles buried are counts, which

means they are non-negative integers (0,1,2,3,. . . ) and
therefore have aminimum value of zero. Such data will not
follow a normal distribution when the counts are small,
but will become increasingly normal as the counts get
larger. A normal model assumes that the data can take
any real number (−∞, +∞), and there is nothing to con-
strain impossible values. This is a problem because 95%
confidence interval (CIs) and predicted values can include

negative values, which cannot occur with count data. For
example, when using a normal model the numbers {0, 0, 0,
0, 1, 2, 5, 9} have a mean of 2.12 and a symmetric 95% CI
of -0.14 to 4.39. The negative values indicate that a normal
model is unsuitable, and the reference distribution used to
calculate p-values will contain impossible values, making
the p-values invalid.
The third property that makes a normal model dubi-

ous is that in addition to a minimum value of zero, there
is also a maximum value—the total number of marbles
available, making the data bounded from above as well as
below. Since a normal model has no constraints on pos-
sible values that the data may take, confidence intervals
can include values greater than the total number of mar-
bles available. One solution is to design the experiment
so that the number of marbles used and the time animals
have to bury them produces results that are not too close
to the upper boundary (which will also ensure censored
observations are unlikely).
Finally, a normal model assumes that the variance of the

data is independent of the mean, which is also referred
to as homogeneity of variance or homoskedasticity. With
count data however the variance is proportional to the
mean—groups with higher means will have higher vari-
ances (Figure 2). In addition, since the total number of
marbles is bounded, it may happen that at high mean val-
ues the variance decreases again. Given the nature of the
data obtained from the marble burying test, it is clear that
in many cases a normal model will be inappropriate and
other options will need to be considered.
One approach to deal with unequal variances and skew-

ness is to transform the data; for example, by taking the
square-root or logarithm of the counts. While such trans-
formations often improve the distributional properties of
the data, they may not work adequately in all situations, in
particular when there are many zeros. Log transformation
is not recommended for count data [10], partly because
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Figure 2Mean-variance relationships for different models. A normal model assumes that the variance is constant and does not depend on the
mean. A Poisson model assumes that the variance is equal to the mean. A binomial model has maximal variance at a proportion of 0.5 and
progressively smaller variances on either side. The means and variances for the four experimental groups from Mehta et al. are plotted [18], and if
the points fall along the line of equality then a Poisson model would be suitable. The variance is greater than the mean in this data, indicating
overdispersion. Dashed line = regression line.

the log of zero is undefined, making it necessary to add a
small value to all of the counts.
Another approach often used when the assumptions of a

parametric test are not met is to switch to nonparametric
methods. Nonparametric tests have a number of undesir-
able features. First, most nonparametric methods analyse
ranks rather than the original values, which results in a
loss of information. Second, parameter estimates and their
confidence intervals are usually not provided by standard
statistical software, only p-values. This means that it is
not possible to estimate important values such as a maxi-
mum response or the EC50 (concentration that gives half
of the maximal response) in a dose-response design; the
only output is an uninformative “the groups are different
(p < 0.05)”. Third, only simple designs can be analysed in
a straightforward manner with standard software. Covari-
ates cannot be included (e.g. adjusting for baseline) and it
is difficult to include multiple explanatory variables in the
analysis and to test for interactions. Some work-arounds
can b e employed such as testing groups individually, but
then the interpretation is more complex and such analyses

tend to be conducted and interpreted inappropriately by
neuroscientists [11].
The key message of this paper is that rather than using

nonparametric tests or transforming the data to fit a
normalmodel, it is often better to use an appropriate para-
metric model in the first place. In other words, select a
model that fits the data rather than mangle the data to fit
a normal model. Generalised linear models (GLMs) were
developed by Nelder and Wedderburn in the 1970s and
are routinely used in many disciplines [12]. As their name
suggests, GLMs are more general versions of normal lin-
ear models. GLMs can be used for any standard analysis
that assumes normality, equal variances, and unbounded
data, but they can also be used for binary (0 or 1), propor-
tion (0 to 1), count (non-negative integers), and positively
skewed data. A detailed discussion of GLMs is beyond the
scope of this article but can be found in references [13-15].
Hilbe provides an introductory book on the analysis of
count data suitable for biologis ts [16], as well as a compre-
hensive but more technical book [17]. Briefly, GLMs use
one of several distributions from the exponential family
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to describe the data. Examples of distributions from the
exponential family include the Gaussian (for normal data),
the gamma (for data with a positive skew), the Poisson
and negative binomial (for count data), and the binomial
(for binary and proportion data). The family is the only
option that needs to be specified when analysing the data.
Two other features of GLMs include the link function,
which describes how the mean of the data is related to
the explanatory variables and associated parameters, and
the inverse link function, which restricts the predicted val-
ues to lie within allowable bounds, such as non-negative
values for count data. Each distribution has a default
or “canonical” link that is typically used, and therefore
does not need to be specified during the analysis (other
link functions are available but they will not be consid-
ered here). One difference with interpreting the results
of GLMs is that the coefficients are not on the original
scale of the data. If interpretation of coefficients is desired,
then the coefficients need to be back-transformed onto
the original scale by applying the inverse link function.
For example, the link function for a Poisson GLM is the
log-link, and therefore taking the antilog returns coeffi-
cients on the original scale (i.e. in units of marbles). GLMs
are implemented in all major statistics packages and have
few “barriers-to-entry”. An appropriate family for the data
needs to be selected, but then analysis proceeds as usual.

Methods
Marble burying data from Mehta and colleagues were
used, and the experimental details can be found in
the original paper [18]; protocols were approved by the
University of Pennsylvania Institutional Animal Care and
Use Committees and were conducted in accordance with
National Institutes of Health guidelines. Briefly, 14 preg-
nant mice were randomly assigned to receive valproic
acid (VPA; n = 9) or a saline injection (n = 5). VPA
was used to generate autistic-like behaviour in the off-
spring (noffspring = 48). Half of the offspring in each
condition were also randomly given MPEP (2-methyl-6-
phenylethyl-pyrididine), a metabotropic glutamate recep-
tor 5 antagonist, or saline injections. MPEP was hypothe-
sised to correct some of the features induced by VPA and
the number of marbles buried out of 20 was an outcome.
There are three hypotheses of interest: (1) does VPA affect
the number of marbles buried, (2) does MPEP affect the
number of marbles buried, and (3) does the existence
or strength of MPEP’s effect depend on whether animals
were exposed to VPA in utero (interaction effect).
This data set is more complex than it initially appears

because VPA was applied to pregnant females and MPEP
to the individual offspring of those females. This is called
a split-unit or split-plot design because there are two types
of experimental units. An experimental unit is the small-
est division of sample material that can be randomly and

independently assigned to different treatment conditions.
The sample size, or “n”, is the number of experimental
units and must be determined correctly to obtain valid p-
values. When testing the effect of VPA, the experimental
units are the pregnant females (n = 14); when testing the
effect of MPEP, the experimental units are the individual
offspring (n = 48) [19,20]. The power to detect an effect of
VPA is lower than forMPEP because of the smaller sample
size, and ignoring the split-unit treatment structure dur-
ing the analysis can give both too many false positives and
false negatives [21-24]. Generalised mixed-effects mod-
els could be used for such data but are beyond the scope
of this article [25]. Rodent studies using split-unit designs
are becoming increasingly popular as new disease models
have been developed that apply an intervention to preg-
nant females to induce pathology in the offspring [26],
and due to recent interest in the epigenetic transfer of
paternal traits [27]. Since the split-unit structure is rarely
taken into account, the statistical results from these stud-
ies are largely uninterpretable [24,28]. The implications of
the split-unit design will generally be ignored to simplify
the comparison of methods. The results of a generalised
mixed-effects model are however reported, both to com-
pare with the other models and for those readers who are
interested in the effects of VPA and MPEP.
The data were analysed using four parametric GLMs

and one nonparametric analysis, but this does not exhaust
all possibilities. The first analysis was a standard 2-way
ANOVA with VPA and MPEP as factors and is a spe-
cific example of a normal linear model (and equivalent
to a Gaussian GLM with the identity link). This can be
thought of as the “standard analysis” that would most
commonly be used and which the other analyses are com-
pared against. With this model it is assumed that the data
can be reasonably approximated by a normal distribution,
can theoretically take any value, the variances are equal
in all groups, and the responses of the individual ani-
mals are independent of each other. The second model
assumes that the data can be described by a Poisson distri-
bution (with the default log link), which is appropriate for
count data. One assumption of a Poisson GLM is that the
variance is equal to the mean. This assumption needs to
be verified, much like the assumption of equal variances
with a normal model. Assumed mean-variance relation-
ships for different GLMs are shown in Figure 2, along with
the relationship observed in the actual data. With count
data, it often happens that the variance is greater than
the mean, and is referred to as overdispersion. Overdisper-
sion can occur for a variety of reasons, including (1) an
important variable has been omitted from the model, (2)
an important interaction term was not included, (3) the
presence of outliers in the data, or (4) a positive corre-
lation between responses, which might indicate a lack of
independence of individual responses [17]. If the data are
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overdispersed, then a Poisson model will have confidence
intervals that are artificially precise and p-values that are
too small. An estimate of overdispersion is often provided
from the output of a GLM analysis but it can also be
calculated by dividing the residual deviance by the resid-
ual degrees of freedom (which also should be provided in
the output of an analysis), and as a rule-of-thumb, if this
value is greater than 1.25 [17] or 1.5 [29], then a Pois-
son model may be unsuitable. The overdispersion in the
Mehta data was estimated to be 2.96, which is well above
these thresholds. The Poisson model has provided useful
information that cannot be obtained with a standard anal-
ysis. Why are the data overdispersed? Was an important
variable omitted? This is indeed the case, the overdisper-
sion is the result of litter-effects [24]. Multiple litters were
used in this experiment and animals within litters tended
to bury a similar number of marbles compared with ani-
mals between litters. Overdispersion can be remedied in
several ways; if it is due to a missing variable or interac-
tion term in the analysis, then including these will remove
the overdispersion, and this should be the first option con-
sidered. Another method of dealing with overdispersion
is to use a quasi-Poisson GLM, which is the third GLM
considered. A quasi-Poisson GLM estimates the amount
of overdispersion and scales the standard errors upwards
to give the appropriate confidence intervals and p-values;
the coefficients are identical to the Poisson model, only
the uncertainty in the estimates differ. The fourth GLM is
a negative binomial model, which is also used for count
data but is more flexible than the Poisson in that the vari-
ance can exceed themean. It is therefore an alternative to a
quasi-Poisson model when overdispersion is present. The
final analysis uses a nonparametric Wilcoxon rank-sums
test. Since it is not possible to calculate an interaction
effect, tests between individual groups were conducted,
and no correction for multiple testing was used.

The results of the different models are compared in
four ways. First, 95% confidence intervals are examined to
see whether they include impossible values for parame-
ters. Second, visual predictive checks are used to compare
data generated from the model to the original data, to
see whether there are any discrepancies [30], pp. 158–
163. Third, the goodness-of-fit (GOF) of the models was
tested. Fourth, models are compared using the Akaike
information criterion (AIC), which trades-off goodness-
of-fit with model complexity. Since AIC values may be
unfamiliar, they are converted into model probabilities,
which sum to one for all of the models under considera-
tion and can be (loosely) interpreted as the probability that
a model is the best (higher probabilities are better). Such
model comparison methods are discussed in detail by
Burnham and Anderson [31,32]. P-values are also exam-
ined to see how they differ between analyses. The analyses
were performed in R (version 3.1.0) [33] and the code can
be found in Additional file 1.

Availability of supporting data
The data supporting the results are included within the
article and can be found in Additional file 2.

Findings
The data in Figure 3A show the mean and the standard
error of the mean (SEM) for each group. Mean and error
bar graphs are common in the biomedical literature but
are ill-suited for understanding the data. They obscure
the discrete and bounded nature of the values, the skew-
ness, and the unequal variances across groups. In addition,
these graphs hide outliers and any unusual clusters in the
data (which perhaps explains their ubiquity), and whether
any animals buried all of the marbles present (censored
observations). These properties are revealed by plotting
the raw data as in Figure 3B. Plotting all of the data is

Figure 3Marble burying test data. (A) Data from the marble burying test are displayed with a typical mean ± SEM graph, and (B) with all the data
plotted, which highlights the skewness, unequal variances, and the discrete and bounded nature of the values. Horizontal lines are the medians.
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useful for understanding the structure and relationships
present, and for quality control (e.g. detecting clusters or
outliers). Each point represents the number of marbles
buried by one mouse, and due to the discrete nature of
the data, the points are stacked beside each other, giving
an impression of the shape of the distribution within each
group. Even if graphs like Figure 3B are not used for pub-
lication, they should nevertheless be examined to obtain a
better appreciation of the data.
Confidence intervals are displayed in Figure 4 for each

of the four GLMs. As can be seen, the interval for the
Control/MPEP group includes negative values with the
normal model. In addition, the intervals are all the same
width, but it was clear from Figure 3B that the equal vari-
ance assumption is not reasonable for this data (and can
be confirmed with a variety of tests for homogeneity of
variance: Fligner-Killeen: χ2

(3) = 10.5, p = 0.015; Bartlett:
K2

(3) = 16.9, p < 0.001; and Levene: F(3,44) = 3.78,
p = 0.017). The other three models have intervals of
different sizes, they do not contain negative values, and
they are asymmetric, which reflects the skewed nature
of the data. The intervals for the Poisson model are too
narrow because the overdispersion was not taken into

account. The quasi-Poisson and negative binomial mod-
els appear sensible. Many published studies have 95% CI
that include negative values (if the error bars represent
SEM, approximately doubling their length gives a 95% CI)
[34-38].
Another way to examine the suitability of the models

is with predictive simulations followed by visual checks.
The idea behind predictive simulation is that if a model is
appropriate and fits the data well, then new data simulated
from the model should look similar to the actual data, and
obvious discrepancies between actual and simulated data
indicate problems with the model. The results of the pre-
dictive simulations are shown in Figure 5, and it is clear
that a normal distribution is not sensible for these data
as the shape of the simulated distribution looks nothing
like the actual data. Furthermore, 19% of the distribu-
tion is below zero and thus contains impossible values.
The Poisson distribution is much better because all val-
ues are greater than or equal to zero, and the shape is
similar to the actual data distribution. Upon closer exam-
ination however it can be seen that the Poisson has too
few zeros and ones. For example, the Poisson model pre-
dicts that only 8% of the data will have a value of zero, but

Figure 4 Estimated means and 95% CI for four statistical models. The normal model confidence intervals are unsuitable for this type of data as they
include negative values for the Control/MPEP group. Furthermore, the intervals are of equal length (due to the homogeneity of variance
assumption) and symmetric for the normal model, which does not reflect the data. The other three models have unequal and asymmetric CIs that
do not include negative values.
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Figure 5 Examining model predictions. Predicted values from the four models can be compared to the data distribution to assess their suitability.
The normal model is clearly inappropriate as 19% of the values are negative and the shape of the distribution looks nothing like the data. The
Poisson model is better because only positive values are predicted, but it underpredicts the number of zeros (predicted = 8%, actual = 17%) and
one counts, and slightly overpredicts counts between two and seven. The quasi-Poisson model is similar to the Poisson, and the distribution from
the negative binomial model is the closest to the actual data.

the actual percentage is 17%. The quasi-Poisson distribu-
tion looks very similar to the Poisson, and it is difficult to
determine whether it is better by visual inspection. All of
the simulated Poisson values are below 20 (the number of
marbles present), but a very small proportion (0.00208%)
were greater than 20 with the quasi-Poisson model. The
negative binomial distribution follows the actual data dis-
tribution the closest, but 0.6% of values from the negative
binomial distribution were greater than 20. As mentioned
previously, models for count data do not have an upper
limit and they may predict values greater than the num-
ber of marbles used in the experiment. The probability of
obtaining such values was very low and therefore negligi-
ble, especially compared with the 19% of impossible values
from the normal model. Nevertheless, in other data sets

this proportion might be much higher, in which case the
count models may not be suitable and the data might be
better analysed as the proportion of marbles buried using
a binomial GLM. Note that the x-axes in Figure 5 range
from 0–20 for all graphs (except for the normal model) so
that direct visual comparisons can be made.
The above graphical comparisons can indicate gross

deviations between actual and predicted data but are
informal methods that cannot be used to discriminate
between similar distributions. Quantitative methods are
available to assist with choosing an appropriate model
and one approach is to use a goodness-of-fit test to cal-
culate how well a model fits the data (Table 1). A small
p-value indicates a poor fit. The normal, Poisson, and
quasi-Poisson models all fit the data poorly (p < 0.0001)
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Table 1 Numeric results for different models

Analysis VPA MPEP VPA×MPEP GOF AIC Pmodel

Normal 0.055 0.009 0.178 <0.001 259 < 0.001

Poisson <0.001 <0.001 0.223 <0.001 256 < 0.001

Quasi-Poisson 0.045 0.006 0.490 <0.001 NA NA

Negative binomial 0.075 0.009 0.470 0.233 223 1.000

Wilcoxon

All: 0.602 All: 0.002 NA NA NA NA

MPEP: 0.494 VPA: 0.021 NA NA NA NA

Vehicle: 0.138 Control: 0.044 NA NA NA NA

P-values for main and interaction effects are displayed. Goodness-of-fit p-values (a small p-value indicates a poor fit), AIC values (lower is better), and model
probabilities (higher is better) indicate that the negative binomial model is preferred. The nonparametric Wilcoxon tests give much larger p-values overall.

whereas the negative binomial model is much better (p =
0.233). Another approach is to use information theoretic
methods such as the AIC to compare models to each
other, which does not provide an absolute measure of
model fit, but only a relative comparison amongst the
models. The more complex a model, the better it will fit
a given data set; unlike the GOF tests, the AIC penalises
more complex models, and thus trades-off complexity and
fit. A lower AIC value is better, and the actual value has
no meaning—it is only used comparatively. The nega-
tive binomial model has the lowest AIC (Table 1) and
is therefore the best. The difference in AICs between
the negative binomial and Poisson model (the next best
model) is 33, indicating that the negative binomial is a sub-
stantial improvement over the Poisson. Converting AIC
values into model probabilities shows that with high prob-
ability, the negative binomial model is the best. It is not
possible to calculate an AIC for the quasi-Poisson model
(a quasi-AIC measure has been developed [31], pp. 67–
70 but it cannot be directly compared with the other AIC
values and so is not displayed). The GOF for the quasi-
Poisson is also identical to that of the Poisson and so it
is not possible to discriminate between these two mod-
els based on their GOF. The quasi-Poisson is therefore
difficult to compare with the other models and for that
reason the negative binomial might be considered a bet-
ter way to deal with overdispersion. Ver Hoef and Boveng
provide a good discussion on using quasi-Poisson versus
negative binomial models to account for overdispersion
[39]. Based on the model predictions, the GOF statistics,
and AIC values, the negative binomial model is preferred,
and the normal model—the most commonly used in the
literature—is the worst. These results do not imply that
a negative binomial model will be the best for other data
sets; the best model will need to be determined in each
case.
The p-values for the different analyses are listed in

Table 1. The first thing to note is the p-values for the
nonparametric Wilcoxon test are much larger than for the

parametric methods. Also, it was not possible to test for
an interaction between VPA and MPEP. The Wilcoxon
test was also absent from previous comparisons because
it is not possible to simulate data sets or calculate a GOF
or AIC, which highlights the shortcomings of nonpara-
metric methods. The p-values from the normal model
were similar to the preferred negative binomial model
(Table 1), but this will not always be the case, particu-
larly when there are many low counts. All p-values for the
effect of VPA in Table 1 are inappropriately small because
the sample size was taken to be the number of animals
rather than the number of pregnant females, or equiva-
lently, the number of litters [24,28]. The correct sample
size can be disregarded when performing a purely sta-
tistical comparison of methods, but in order to obtain
the correct biological interpretation, a generalised linear
mixed effects model was used. This is similar to the Pois-
son model but correctly accounts for the split-unit nature
of the design. While animals in the VPA group buried 1.6
more marbles than animals in the control group, there
was no strong evidence for an effect of VPA (p = 0.192).
The power to detect this effect is low since the (correct)
sample size is now only 14. In addition, there were nearly
twice as many VPA as control litters, which is less pow-
erful than having an equal number of litters in the two
conditions. MPEP reduced the number of marbles buried
by 4.1 (p = 0.002), and this effect was similar within the
VPA and control groups (little evidence for an interaction
effect: p = 0.203). Another finding from this analysis is
that the effect of MPEP varied across litters. On average,
animals in the MPEP condition buried 4.1 fewer marbles,
but this ranged from 0 to 10 marbles within the differ-
ent litters. The variation of MPEP’s effect within litters is
larger than expected by chance (p < 0.001), assuming that
the average effect of 4.1 is constant across litters, and any
deviation from this value represents sampling variation.
The cause of this variation is unclear.
One may argue that effects are often large and the dif-

ferences between using a normal, Poisson, or negative



Lazic BMC Research Notes  (2015) 8:141 Page 9 of 10

binomial model will be small, and the correct overall con-
clusion will still be reached. It is true that when large
effects are present, the correct qualitative conclusion can
be obtained (i.e. reject or do not reject the null hypoth-
esis) no matter how inappropriate the analysis. However,
if only qualitative results are of interest then a statistical
analysis can be dispensed with altogether. The purpose of
an analysis is to obtain unbiased estimates of effects and
an appropriate measure of uncertainty in those estimates.
Models for count data have been developed, are simple to
implement and interpret, and available in most statistical
packages. These should be the default methods for marble
burying data with normal linear models used only if they
are justified.

Conclusions
Given that the number of marbles buried are counts, sta-
tistical methods that assume normality, equal variances,
and unbounded values will often be inappropriate. If a
formal statistical analysis is to be conducted, then appro-
priate methods should be used. Furthermore, the number
of marbles used and the time available to bury them
should be optimised such that no (or very few) animals
bury all of the marbles. This will ensure that censored
observations do not bias the estimates and reduce the
sensitivity of the assay. These points also generalise to
other outcomes that are counts. The American National
Institutes of Health (NIH) has recently recognised the
need to improve the statistical skills of biologists [40], and
expanding one’s repertoire of statistical methods beyond
the normal linear model is a useful and straightforward
step in that direction.

Additional files

Additional file 1: R code. Code for the analyses is given as a plain text file.

Additional file 2: Raw data. Raw data from Mehta et al. [18], including
the number of marbles buried, sex, and litter. Details can be found in the
original publication.
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