
Velloso et al. BMC Res Notes  (2015) 8:206 
DOI 10.1186/s13104-015-1190-0

TECHNICAL NOTE

BOWS (bioinformatics open web 
services) to centralize bioinformatics tools 
in web services
Henrique Velloso†, Ricardo A Vialle† and J  Miguel Ortega*

Abstract 

Background:  Bioinformaticians face a range of difficulties to get locally-installed tools running and producing results; 
they would greatly benefit from a system that could centralize most of the tools, using an easy interface for input 
and output. Web services, due to their universal nature and widely known interface, constitute a very good option to 
achieve this goal.

Results:  Bioinformatics open web services (BOWS) is a system based on generic web services produced to allow pro-
grammatic access to applications running on high-performance computing (HPC) clusters. BOWS intermediates the 
access to registered tools by providing front-end and back-end web services. Programmers can install applications in 
HPC clusters in any programming language and use the back-end service to check for new jobs and their parameters, 
and then to send the results to BOWS. Programs running in simple computers consume the BOWS front-end service 
to submit new processes and read results. BOWS compiles Java clients, which encapsulate the front-end web service 
requisitions, and automatically creates a web page that disposes the registered applications and clients.

Conclusions:  Bioinformatics open web services registered applications can be accessed from virtually any program-
ming language through web services, or using standard java clients. The back-end can run in HPC clusters, allowing 
bioinformaticians to remotely run high-processing demand applications directly from their machines.

Keywords:  Web services, Bioinformatics, HPC

© 2015 Velloso et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Bioinformatics increasingly must deal both with large 
amounts of data provided by massive DNA sequenc-
ing efforts and with the novel patterns exposed by myr-
iad systematic approaches. These data demand diverse 
and powerful software tools. Such tools are avail-
able, but users often face a wide range of difficulties as 
they attempt to get these tools running and produc-
ing results. There are often complex installation proce-
dures, and many of these tools demand high processing 
power, which might not be available. Furthermore, each 

application has its own learning curve, forcing users to 
spend time learning how to use each one.

Bioinformaticians benefit from systems that central-
ize the tools needed for their work, using an interface 
for input and output. Web services, due to their univer-
sal nature and widely known interface, constitute a very 
good option to achieve this goal. Furthermore, web ser-
vices provide a security layer that can restrict access to 
tools and protect copyrighted programs running on the 
back-end.

Bioinformatics centers are present all around the 
world, such as GenomeNet that mantains KEGG [1], 
UniProt consortium [2], SIB that mantains the ExPASy 
portal [3] and National Center for Biotechnology Infor-
mation (NCBI). These and other centers offer tools which 
demand high performance computing (HPC). Integration 
of web portals with HPC is common nowadays. Thus, the 

Open Access

*Correspondence:  miguel@icb.ufmg.br 
†Henrique Velloso and Ricardo A Vialle contributed equally to this work
Departamento de Bioquímica e Imunologia, Instituto de Ciências 
Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 
MG, Brazil

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-015-1190-0&domain=pdf


Page 2 of 8Velloso et al. BMC Res Notes  (2015) 8:206 

availability of HPC applications might support the devel-
opment of new portals.

Research activities in bioinformatics have great 
demands for services. Presently, virtually any biologist 
makes use of web servers to access bioinformatics appli-
cations, either accessing a specific tool or a portal. Con-
versely, the web services concept differs from services 
offered by such web servers that are designed for human 
access. Despite the enormous benefit given by the access 
to bioinformatics resources via web pages, there is also a 
demand for application programming interfaces (APIs) 
that can be accessed by scripts and are often incorporated 
into automated pipelines [4]. There are several major 
servers that provide access to various data resources and 
analysis tools like: European Bioinformatics Institute 
(EMBL-EBI) [5], NCBI E-utilities [6], Virginia Bioinfor-
matics Institute (VBI) [7], Kyoto Encyclopedia of Genes 
and Genomes (KEGG) API service [1] and the DNA Data 
Bank of Japan (DDBJ) web API for bioinformatics [8]. A 
comprehensive collection of web services has been inte-
grated in TogoWS SOAP and REST APIs [9]. Also, many 
other services can be found in BioCatalogue [10]. Differ-
ent methods can be incorporated together with workflow 
engines such as Taverna [11], Kepler [12], or Galaxy [13] 
and access to them can be made available by web ser-
vices. Recently, workflow portals such as Biowep [14] 
(Workflow Enactment Portal for Bioinformatics) and Bio-
VeL [15] (Biodiversity Virtual e-Laboratory) were organ-
ized providing browser-based interfaces and also web 
services interfaces for remote invocation. Moreover, a 
comprehensive workflow repository is available in http://
www.myexperiment.org [16].

Here we present bioinformatics open web services 
(BOWS), a web services platform that allows central-
ized and standardized access to bioinformatics tools. 
The major advantage of BOWS is that it is installed in an 
intermediary machine and provides a front-end to con-
sumers of bioinformatics tools and a secure back-end 
to owners’ tools. The front-end exposes a WSDL (the 
document in XML or Web Services Description Lan-
guage which describes a web service) with three web 
methods used by bioinformaticians to submit processes, 
check statuses and get results from applications. The 
back-end consists of five secure web methods used by 
tool owners to register new applications, delete existing 
applications, read new processes, change their statuses 
and submit results. This model creates a cyclical pro-
cess where submissions are sent to BOWS via front-end 
services and then asynchronously executed by the back-
end server. When the results are ready they are written 
back to BOWS and made available to the requester. The 
BOWS platform is not intended to replace other available 
resources as a global system, but instead aims to deliver 

by command line, GUI clients or web portal pages the 
access to asynchronous services executed under powerful 
HPC instances without bureaucracy. Thus, programmers 
that install applications with many dependencies, or that 
couple several programs in a pipeline, or that aim to pro-
tect the access to their code, can promptly give an API 
access “in-house” to their programs. Moreover, BOWS 
automatically generates a website that presents its reg-
istered applications and additionally, generates Java cli-
ents for submission of jobs and retrieval of results. Still, 
BOWS automatically writes a Java program to govern the 
HPC transactions with the system.

Results
System description
Bioinformatics open web services server offers two dif-
ferent WSDL files: a front-end WSDL and a back-end 
WSDL (Figure  1). Front-end transactions are made by 
client programs to submit new processes to registered 
applications and read results. Back-end transactions are 
performed by HPC instances to retrieve submitted pro-
cesses and insert results after execution. Back-end trans-
actions shall be used first, by programmers which will 
register their applications in BOWS platform.

Since intensive computing is often required by Bio-
informatics applications, BOWS was designed to deal 
with asynchronous web service requisitions. To add high 
performance computing to the system through a safe 
and simple mechanism, requisitions are received by the 
BOWS front-end service and stored in a local database. 
An agent in the computational cluster named “arrow” 
is responsible for connecting with the back-end web 
service. To allow back-end transactions, BOWS makes 
available a restricted back-end web service with three 
web methods. The “arrow” agent accesses the back-end 
web service to look for new jobs using the nextQueued-
Process method. If one is found, the agent modifies the 
status from “queued” to “running” with the change-
ProcessStatus operation and processes the input. When 
the result is available, it saves the result back to BOWS 
using the insertProcessResult web method and changes 
the status to “finished”. If a processing error is found, the 
status can also be changed to “error”.

Safety is ensured because the cluster connects unidi-
rectionally to the BOWS server, thus it is not necessary 
to request that systems administrators change any vul-
nerable setting, such as opening additional ports. Set 
up is simple since both the application and back-end 
connecting agent are written in any computational lan-
guage. Crontab triggers the agent periodically (typically 
every minute). Therefore, the number of nodes typically 
required by the application is defined by the programmer, 
in the “arrow” agent. Virtually the HPC user does not 

http://www.myexperiment.org
http://www.myexperiment.org


Page 3 of 8Velloso et al. BMC Res Notes  (2015) 8:206 

require any special management to make the application 
to be linked to BOWS.

The back-end services should also be used to register 
a new application to BOWS. There are two administra-
tive methods created to allow application owners set up 
and/or remove a new application: createApplication and 
removeApplication. Thus, this step up should be per-
formed before executing processes.

Bioinformatics open web services front-end service 
provides web methods that allow users to submit pro-
cesses to registered applications and read results. As the 
responses are asynchronous, typically the user program 
should enter a loop waiting for the availability of a pro-
cess result. In general, the user program should operate 
as follows to access a tool in the BOWS platform:

1.	 Submit a new process with the desired parameters 
calling the front-end web method submitProcess.

2.	 Enter a loop where, at each iteration, it should check 
the status of the submitted process by calling the 
method checkProcess.

3.	 If the process status is FINISHED, it should call the 
method getResults to obtain the results.

4.	 If the process status is ERROR, it should handle the 
error.

Installation
Bioinformatics open web services is available in http://
sourceforge.net/projects/bows/. Files made available  
comprise a “user guide for BOWS installation and 
usage”, “bows.sql” that corresponds to BOWS database 
dump and two files “BOWS.war” and “BOWSWeb.war” 
which are intended to be copied into “webapps” folder of 
Apache Tomcat. “BOWS.war” provides the web services 
functionalities and WSDL file, while “BOWSWeb” builds 
a website interface. The user guide also contains example 
GUI programs to access BOWS services.

BOWSWeb
In order to facilitate the management of the applica-
tions, a website interface called BOWSWeb (1) extracts 
information from BOWS database and presents informa-
tion of all registered application, (2) includes a back-end 
transaction interface for creating and deleting appli-
cations and (3) automatically creates java clients for 
back-end transactions (“arrow” script) and front-end 
transactions (for either submitting jobs or for getting 
results). These features are explained below.

To register an application, the method createApplica-
tion is called. This method requires, besides the informa-
tion required to run the application (e.g. name, code, and 

Figure 1  Sequence diagram showing the cycle of execution in BOWS. Front-end transactions are on the left while back-end transactions are 
shown on the right.

http://sourceforge.net/projects/bows/
http://sourceforge.net/projects/bows/


Page 4 of 8Velloso et al. BMC Res Notes  (2015) 8:206 

parameters) the inclusion of an author code. Therefore, 
only the creator can subsequently delete a registered 
application. Registration can be done directly through 
the SOAP method (by using the message protocol Simple 
Object Access Protocol available for most programming 
languages), or more conveniently by using a BOWSWeb 
form interface. Similarly, to remove an application, the 
method “removeApplication” is called and there is an 
option to remove it in the website by just clicking a but-
ton. Both procedures require the author code to allow 
the exclusion. Figure 2 exemplifies how to register a new 
application in BOWS.

Using the information registered for each applica-
tion BOWSWeb displays in a website the information 
on all registered applications, as exemplified in Figure 3. 

Moreover, with the information available in its database 
(e.g., parameter names and types), BOWSWeb automati-
cally generates java clients to call BOWS methods hid-
den from the final user. Clients are generated for both the 
front-end and the back-end web services and are distrib-
uted by the website. Therefore, users do not even need to 
learn how to use SOAP protocols.

For the front-end two executables are created, one for 
job submission and one for the results retrieval (bottom 
panel in Figure  3). The submission client name follows 
the pattern “appcodeSunmitJob.jar” and receives as argu-
ments the pre-defined parameters called with flags tagged 
by the parameter names. If the expected parameter is a 
binary file only the file name is required, and the client 
will load the file by itself. Also an additional parameter 

Figure 2  How to register an application in BOWS. This can be done by a webservice transaction or by filling this form in BOWS services website. 
In this example, a Submit Job client for running MUSCLE would be automatically compiled and disposed in the website (see the green button in 
Figure 3). To run the application, the command line would be: java -jar runmuscleSumitJob.jar -sequence_file <myfile> -user <name>. A link for cre-
ating the “arrow” program would appear (red button in Figure 3). It downloads a base “arrow” (Arrow_runmuscle.jar), a shell script (Arrow_runmuscle.
sh) to complement the base “arrow” by informing the application execution command line in it, and a shell script to edit cron scheduler to execute 
the “arrow”.



Page 5 of 8Velloso et al. BMC Res Notes  (2015) 8:206 

“user code” called by the flag “-user” is required to pro-
tect that anyone may visualize the results when available. 
Therefore when a job is submitted the SubmitJob returns 
a process id that should be used together with the user 
code on the results retrieval client. Figure 3 shows a green 
button that is a link to download the client for the appli-
cation SeedLinkage. The “getresults.jar” client is the same 
for any application, it receives only two parameters: the 
process id (using the flag “-pid”) and the user code (using 
the flag “-user”). If the process result is a text, it will be 
show on screen; otherwise a file named after the pid will 
be saved. It is also downloadable from the website.

For the back-end three files are generated, the java 
executable “arrow”, one shell script which will link the 
“arrow” with the application and another shell script that 
configures cron to execute the “arrow”. The shell script, 
named “Arrow_appcode.sh”, is expected to be edited by 
adding the command line needed to call the application 
execution. Then, the java client, named “Arrow_appcode.
jar”, manages the SOAP requisitions to look for new sub-
mitted jobs,  execute the application calling the “Arrow_
appcode.sh” and send the results to BOWS server. The 

java client needs to be kept running to process the jobs, 
we recommend using a crontab schedule, and to facili-
tate the installation we provide a script called “add_to_
crontab.sh” that automatically  configures this feature. 
Although expert programmers might be able to program 
the “arrow” cycle, this feature of BOWSWeb may prompt 
BOWS usage. A red button in the website (Figure 3, bot-
tom panel) is a link to download a zip file containing the 
“arrow” and the script.

BOWSWeb also distributes in the website a java getre-
sults client with graphical interface. The “GetResultsGUI.
jar” is a java executable that shows a simple interface 
showing the boxes for the process id and the user code 
needed to retrieve a result. It also allows the user to save 
the file where desired. The same idea can be applied for 
the submit process, so the distribution of GUI clients to 
colleagues can facilitate the use of applications on any 
machine that has java. Webpages also can be created by 
local research groups where the submission of requests is 
functionally similar to these GUI clients.

Thus, BOWSWeb lists all applications registered 
in BOWS, allows for an easy registration of a new 

Figure 3  A view of BOWS services website. Whenever an application is registered in BOWS, the information provided is used to create a website 
with access to all applications (upper panel). A click on “Details” opens a page with access to the Java client used to submit jobs, command line and 
GUI clients to check status and retrieve results, a draft of the “arrow”, the program that controls the application in the HPC (lower panel) and the 
description of the parameters required (not shown).



Page 6 of 8Velloso et al. BMC Res Notes  (2015) 8:206 

application, generates the specific java client for submit-
ting a job to this application, provides a general java cli-
ent to retrieve results and, remarkably, generates a java 
program to control the HPC connection through the 
back-end. Therefore, any program installed in a HPC can 
be promptly accessed as an API, not only by SOAP pro-
tocol, but also by executing the java client generated by 
BOWSWeb.

Case studies
Three case studies were conducted in the BOWS platform 
and are available for tests at http://biodados.icb.ufmg.br/ 
bows (Figure 3).

The multiple sequences aligner Prank [17] was reg-
istered in an online BOWS server. The client receives 
as parameter an input file in MULTIFASTA format and 
submits a process to the BOWS platform registered as 
“PrankAlign”. The demo client uses the three methods in 
a row: submitProcess, checkProcess and getResults, in 
a transparent manner. Results show the multiple align-
ments performed in BOWS platform. It is important to 
note that on the client machine all that is required is the 
installation of the Java virtual machine. The user of this 
client is not aware of which web server executed the mul-
tiple sequences alignment. Remarkably, “user” might be a 
script. Execution is as simple as: java -jar prankalignSub-
mitJob.jar -fasta myoglobins -user userCode.

The second application is a very well-known one, 
BLASTp [18], however it searches an UniProt database 
comprised of only “Complete” sequences (depleted of 
“Fragments”). This is an example of a case where a com-
mon application is used, however it searches a database 
periodically maintained by a remote group.

The third example is SeedLinkage [19], a software pro-
duced by our group that creates a group of orthologues 
related to a Seed. This example was included because 
SeedLinkage installation is painful due to several depend-
encies. Therefore, by using BOWS, it can be executed 
remotely with just a java command line. Figure 4 shows 
the GetResultsGUI.jar interface. First execution retrieved 
the information “RUNNING” and, when the job was 
completed, the interface shows the cluster number, the 
taxonomy identifier of the clustered sequences, and the 
UniProt accession for the grouped proteins. By pressing 
the Save button results can be conveniently stored. In the 
sourceforge distribution, submit job clients specific for 
these examples were included.

Expected usage
Several groups working on bioinformatics develop soft-
ware or pipelines and there is often a lag until these appli-
cations can have an application programmatic interface 
(API), at which time other colleagues and collaborators 

can promptly add them as routines or methods in dis-
tinct programs. Moreover, frequently the research group 
works with a pipeline in which just a few parameters are 
changed, aiming to preserve the characteristics of the 
approach taken by the group, so it is convenient to dis-
tribute amongst colleagues and collaborators simple Java 
programs that will process the data with a few specific 
parameters while the rest of the pipeline follows the origi-
nal set up. To use BOWS it is necessary that a program-
mer with large expertise installs the application and edits 
the “arrow” script, which accesses BOWS from the back-
end. However, after registering the application, BOWS not 
only provides software access with the front-end methods, 
which require the knowledge of SOAP, but automatically 
generates a BOWS clients website which contains Java 
programs, parameters description, and default examples. 
Front-end users can run those Java programs or, although 
not so elegant, write scripts in other programming lan-
guages such as Perl or Python and execute the Java pro-
grams within them. Thus, BOWS may be used to provide 
global access to in-house software through a very simple 
procedure, protecting access to the HPC that executes the 
application and keeping its code. However, its main usage 
might be to quickly provide software and simplified com-
mand lines to colleagues that share HPC access. BOWS 
shortens the gap between installation of an application 
and sharing it, without exposing the HPC to direct access.

Figure 4  Graphical User Interface Get BOWS Results. A front-end 
client can be used to check the status (window in second panel), 
retrieve, and save results. In this case, the program Seed Linkage cre-
ated a cluster of orthologues for THC synthase (uniprot_ac Q33DQ2) 
from Cannabis sativa (taxid 3483), finding sequences from Citrus 
clementina (taxid 85681). Seed Linkage has many dependencies and 
is thus hard to install, but it was easily executed with the Java client 
downloaded from BOWS website with the command line: java -jar 
seedlinkageSubmitJob.jar -seed Q22DQ2 -user biodados.

http://biodados.icb.ufmg.br/bows
http://biodados.icb.ufmg.br/bows


Page 7 of 8Velloso et al. BMC Res Notes  (2015) 8:206 

Virtually, any tool can be used with BOWS, although 
with this version both input and output might be 
restricted to 4  Gb, because this is the limit that can be 
populated in the intermediary MySQL database. How-
ever, both input and results can be delivered by sending 
the file location through BOWS, as a parameter. Bioin-
formatics, which characteristically deals with software 
with complex dependencies, thus would find BOWS very 
useful; however, its use for research on other areas such 
as chemistry, physics, etc., is also possible.

Drawbacks and limitations
One important drawback is that the transactions are 
based on SOAP. A version might be available in the 
future based on Json, so the requisitions can be executed 
by REST. This will facilitate the usage by programs since 
the lag for learning how to code a Json object is rela-
tively short. Although the encapsulation of transactions 
in Java clients provides prompt usage of the platform, 
results obtained still require parsing, thus pushing the 
application programmer to provide them in a well-
designed format. The most important drawback might 
also be its greatest feature: the access to HPC power can 
be extended to unregistered users. Once the application 
is installed in the HPC by a registered user, its access is 
extended to colleagues. Thus, this registered user might 
be overloading the HPC. To deal with this, application 
author must limit the number of instances/nodes/cores 
used by the application, since BOWS automatically will 
send just one process at the time, when the nextQueued-
Process method is called.

A limitation might be not to provide data and proce-
dures reuse if they are produced in the HPC, and data 
provenance (tracing and recording the origins of data 
and its movement). One possible approach is the expert 
programmer to split the workflow in independent appli-
cations, and then the front-end programmer will execute 
them as routines or methods, controlling data and proce-
dures reuse, and provenance. This is a limitation because 
two front-end users must contact each other to share 
intermediary results.

Conclusions
BOWS provides a wide range of benefits to both Bioin-
formatics tools consumers and owners. The Web meth-
ods are generic and use a common syntax to access any 
registered application, so users only have to learn once 
and are ready to use any tool. Also, due to the universal 
nature of web services, BOWS registered applications can 
be accessed from virtually any programming language, 
as most of them provide extensive support to build web 
service clients. This solution also protects the code and 
intellectual property of applications, since the final users 

do not have access to the code or the binaries. Finally, the 
back-end can run in HPC clusters, allowing bioinforma-
ticians to remotely run high-processing-demand appli-
cations directly from their machines, which otherwise 
would be unfeasible. Installation files and instructions 
for the BOWS platform are available in sourceforge.net. 
BOWSWeb facilitates the usage, providing BOWS with a 
compelling interface.

Availability and requirements
Project name: BOWS

Project home page: https://sourceforge.net/projects/
bows

Operating system: Linux
Programming language: Groovy, Java
Other requirements: Java 6 or higher, Apache Tomcat 7 

or higher, MySQL 5.0 or higher.
License: BSD
Any restrictions to use by non-academics: None

Abbreviations
BOWS: bioinformatics open web services; HPC: high-performance computing.

Authors’ contributions
HV conceived BOWS platform and performed all programming. RAV installed 
applications, programmed BOWSWeb, set up the source code repository and 
prepared user documentation. JMO coordinated the work and provided scien-
tific input and feedback. All authors read and approved the final manuscript.

Acknowledgements
Authors are grateful to all those who contributed with testing, especially 
Hector Urbina and Tomas Perez-Acle, from Universidad de Chile, for thoughtful 
feedback and suggestions. Authors thank Dr. Darren Natale, from PIR (USA), 
for critically reviewing this manuscript. This work was supported by Conselho 
Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coorde-
nação de Aperfeiçoamento de Pessoal de Ensino Superior (Capes).

Compliance with ethical guidelines

Competing interests
The authors declare that they have no competing interests.

Received: 27 August 2014   Accepted: 20 May 2015

References
	1.	 Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) 

Data, information, knowledge and principle: back to metabolism in KEGG. 
Nucleic Acids Res 42:D199–D205

	2.	 The UniProt Consortium (2009) The universal protein resource (UniProt) in 
2010. Nucleic Acids Res 38:D142–D148

	3.	 Gasteiger E (2003) ExPASy: the proteomics server for in-depth protein 
knowledge and analysis. Nucleic Acids Res 31:3784–3788

	4.	 Neerincx PBT, Leunissen JAM (2005) Evolution of web services in bioinfor-
matics. Brief Bioinform 6:178–188

	5.	 McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N et al (2013) 
Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 
41:W597–W600

	6.	 Acland A, Agarwala R, Barrett T, Beck J, Benson DA, Bollin C et al (2014) 
Database resources of the National Center for Biotechnology Information. 
Nucleic Acids Res 42:D7–D17

https://sourceforge.net/projects/bows
https://sourceforge.net/projects/bows


Page 8 of 8Velloso et al. BMC Res Notes  (2015) 8:206 

	7.	 Eckart JD, Sobral BWS (2003) A life scientist’s gateway to distributed data 
management and computing: the PathPort/ToolBus framework. OMICS 
7:79–88

	8.	 Kaminuma E, Mashima J, Kodama Y, Gojobori T, Ogasawara O, Okubo K 
(2009) DDBJ launches a new archive database with analytical tools for 
next-generation sequence data. Nucleic Acids Res 38:D33–D38

	9.	 Katayama T, Nakao M, Takagi T (2010) TogoWS: integrated SOAP and REST 
APIs for interoperable bioinformatics web services. Nucleic Acids Res 
38:W706–W711

	10.	 Bhagat J, Tanoh F, Nzuobontane E, Laurent T, Orlowski J, Roos M et al 
(2010) BioCatalogue: a universal catalogue of web services for the life 
sciences. Nucleic Acids Res 38:W689–W694

	11.	 Hull D, Wolstencroft K, Stevens R, Goble C, Pocock MR, Li P et al (2006) 
Taverna: a tool for building and running workflows of services. Nucleic 
Acids Res 34:W729–W732

	12.	 Altintas I, Berkley C, Jaeger E, Jones M, Ludascher B, Mock S (2004) Kepler: 
an extensible system for design and execution of scientific workflows. In: 
Proceedings 16th International Conference on Scientific and Statistical 
Database Management 2004

	13.	 Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive 
approach for supporting accessible, reproducible, and transparent com-
putational research in the life sciences. Genome Biol 11(8):R86

	14.	 Romano P, Bartocci E, Bertolini G et al (2007) Biowep: a workflow enact-
ment portal for bioinformatics applications. BMC Bioinform 8(Suppl 
1):S19

	15.	 BioVel (2015). http://www.biovel.eu. Accessed 23 Mar 2015
	16.	 Goble CA, Bhagat J, Aleksejevs S, Cruickshank D, Michaelides D, New-

man D et al (2010) myExperiment: a repository and social network for 
the sharing of bioinformatics workflows. Nucleic Acids Res 38(suppl 
2):W677–W682

	17.	 Löytynoja A, Goldman N (2005) An algorithm for progressive multi-
ple alignment of sequences with insertions. Proc Natl Acad Sci USA 
102:10557–10562

	18.	 Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W et al 
(1997) Gapped BLAST and PSI-BLAST: a new generation of protein data-
base search programs. Nucleic Acids Res 25:3389–3402

	19.	 Barbosa-Silva A, Satagopam VP, Schneider R, Ortega JM (2008) Clustering 
of cognate proteins among distinct proteomes derived from multiple 
links to a single seed sequence. BMC Bioinform 9:141

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.biovel.eu

	BOWS (bioinformatics open web services) to centralize bioinformatics tools in web services
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	System description
	Installation
	BOWSWeb
	Case studies
	Expected usage
	Drawbacks and limitations

	Conclusions
	Availability and requirements
	Authors’ contributions
	Received: 27 August 2014   Accepted: 20 May 2015References




