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TECHNICAL NOTE

LASER: Large genome ASsembly 
EvaluatoR
Nilesh Khiste and Lucian Ilie*

Abstract 

Background:  Genome assembly is a fundamental problem with multiple applications. Current technological limita-
tions do not allow assembling of entire genomes and many programs have been designed to produce longer and 
more reliable contigs. Assessing the quality of these assemblies and comparing those produced by different tools is 
essential in choosing the best ones. The QUAST program has become the current state-of-the-art in quality assess-
ment of genome assemblies. The only drawback of QUAST is high time and memory usage for large genomes, e.g., 
over 4 days and 120 GB of RAM for a single human genome assembly.

Results:  We introduce LASER, a new tool for assembly evaluation that improves greatly the speed and memory 
requirements of QUAST. For a human genome assembly, LASER is 5.6 times faster than QUAST while using only half 
the memory; one human genome assembly is evaluated in 17 hours instead of 4 days. The code of LASER is based on 
that of QUAST and therefore inherits all its features.

Conclusions:  Genome assembly evaluation is an essential step in assessing the quality of an assembly that is too 
often done improperly, in part due to significant resource consumption. With the introduction of LASER, proper evalu-
ation can be performed efficiently.
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Background
The current sequencing technologies produce short 
pieces of DNA, called reads, that need to be assembled 
together to reconstruct the original genome. Usually, 
whole genomes cannot be produced and instead the 
assembling programs produce longer DNA pieces, called 
contigs. High quality assemblies require longer and more 
accurate contigs. Genome assembly is a difficult problem 
that is far from being solved. A multitude of assemblers 
have been designed, see, e.g., [1–11].

Comparing the quality of two assemblies is already 
nontrivial; one may have longer contigs while the other 
may have fewer misassembles. Given the large number 
of tools available, choosing the best one for, say, build-
ing a new pipeline, becomes a difficult problem. Evalu-
ating the assembly quality for an assembler during the 
designing stage is essential as well. Therefore, fast and 

effective evaluation of genome assembly quality is of 
crucial importance and a number of solutions have been 
proposed [12–17]. The most comprehensive evaluation is 
currently provided by the QUAST program [17]. QUAST 
quickly became the current state-of-the-art in assembly 
evaluation. Its thorough evaluation, new metrics, and 
useful visualizations made it achieve widespread use. Its 
only drawback is the high time and memory usage for 
large genome assemblies. In most cases, it requires over 4 
days and 120 GB of RAM to assess the quality of a single 
human genome assembly.

To remedy this problem we have designed LASER: 
Large genome ASsembly EvaluatoR. LASER’s code is 
based on that of QUAST, inheriting all its features and 
advantages. We describe below the essential improve-
ments implemented in LASER and compare its perfor-
mance with that of QUAST on several human datasets.

Methods
The most time consuming stage of QUAST is, by far, the 
maximal exact match (MEM) computation step of the 
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alignment process, performed using the NUCmer aligner 
from MUMmer v3.23 [18]. Our recent E-MEM tool [19] 
clearly outperforms not only MUMmer but also the cur-
rently best tools for MEM computation in large genomes: 
[20–24]. It was therefore a natural choice for replacing 
MUMmer.

Besides using E-MEM, we performed a number of 
other improvements as well. A large number of redun-
dant string copy operations on large strings in the ‘show-
snp’ utility program of the MUMmer toolkit have been 
avoided. The memory and performance of Python code 
was improved by replacing class objects with tuples.

The rest of QUAST code has been reused in LASER. 
MUMmer and GlimmerHMM [25] are open source and 
the authors of GeneMarkS [26] have kindly allowed us to 
use their code in LASER.

Results
As mentioned before, all features of QUAST have been 
preserved and LASER has been designed to be used 
exactly the same way as QUAST. That is, LASER pro-
duces exactly the same output. The advantage of LASER 
consists of greatly increased speed and reduced memory 
usage. To prove these claims, we have compared LASER 
and QUAST on several datasets, presented in Table 1. As 
we are interested in improvement when it really matters, 
that is, for large genomes, all datasets are human. They 
were all produced by Illumina HiSeq2000 machines. All 
datasets were assembled using SOAPdenovo2  [6]. We 
used SOAPdenovo2 because of its good speed. The k-mer 
size producing the best assembly (as indicated by the 
aligned N50 size) was used. This was k = 65 for H1 and 
k = 71 for the other datasets. The assemblies are avail-
able for download from the website of LASER.

All tests were performed on a DELL PowerEdge R620 
computer with 12 cores Intel Xeon at 2.0’GHz and 256 
GB of RAM, running Linux Red Hat, CentOS 6.3.

Figure 1 gives the time and memory comparison between 
QUAST and LASER on the SOAPdenovo2 assemblies 
produced from the datasets in Table 1. LASER is 5.6 times 
faster than QUAST while using half the memory.

Conclusions
We hope that the improvement in genome assembly eval-
uation provided by LASER will further boost the use of 
thorough quality evaluation. N50 is still used as the most 
important parameter. (N50 is the length l such that the 
sum of the lengths of all contigs of length l or more is at 
least half of the total length of all contigs.) An aggres-
sive assembler will produce a high N50 but at the cost of 
many misassemblies, thus lowering the overall quality. 
Therefore, a combination of parameters, as provided by 
QUAST or LASER, gives a much better evaluation of the 
actual assembly quality.

Availability and requirements
Project name: LASER
Project home page: http://www.csd.uwo.ca/~ilie/LASER/
Operating system(s): UNIX, Linux, Mac OS X
Programming language: C++, OpenMP
License: see web page
Any restrictions to use by non-academics: licence 
needed.

Table 1  The datasets used for comparison; accession numbers are included for the datasets and for the corresponding 
reference genomes

Dataset Organism Accession 
number

Read  
length

Number of  
reads

Total bp Depth of  
coverage

Reference 
genome

Genome length

H1 Homo sapiens SRR1302280 101 1,287,175,558 130,004,731,358 41 Build 38 3,209,286,105

H2 Homo sapiens ERR194146 101 1,626,361,156 164,262,476,756 51 Build 38 3,209,286,105

H3 Homo sapiens ERR194147 101 1,574,530,218 159,027,552,018 50 Build 38 3,209,286,105

H4 Homo sapiens ERR324433 101 1,614,713,636 163,086,077,236 51 Build 38 3,209,286,105

H5 Homo sapiens ERX069505 101 1,708,169,546 172,525,124,146 54 Build 38 3,209,286,105

Ti
m

e 
(h

)

0
20

40
60

80
10

0

M
em

or
y 

(G
B

)

0
20

40
60

80
10

0
12

0

H1 H2 H3 H4 H5 H1 H2 H3 H4 H5

QUAST LASER

Fig. 1  Comparison. Visual comparison of the time (left plot) and 
memory (right plot) between QUAST and LASER

http://www.csd.uwo.ca/~ilie/LASER/
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