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CORRESPONDENCE

Detecting differential gene expression 
in blastocysts following pronuclear transfer
Edward H. Morrow*   and Fiona C. Ingleby

Abstract 

Nuclear transfer techniques (a.k.a. mitochondrial replacement therapies) are currently under development to pro-
vide a route to eliminating particular instances of mitochondrial disease from the germline. Before these kinds of 
techniques are implemented clinically it is of primary concern that their safety and efficacy is established. In a recent 
paper, Hyslop et al. (Nature 534:383–386, 2016. doi:10.1038/nature18303) utilized a specific version of pronuclear 
transfer to investigate the consequences for gene expression in the developing embryo, which may indicate whether 
or not developmental pathways have been perturbed. However, the study was only able to include a small number 
of blastocysts within each treatment group, although a larger number of single cell expression profiles from each 
blastocyst were acquired. Using simulated datasets we show that the size and experimental design of this study 
cannot provide conclusive evidence that expression profiles of manipulated or control samples are indistinguishable 
from one another due to low power. These simulations also illustrate why visual inspections of principle component 
analyses used in the study cannot replace statistical modeling of treatment effects.
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Background
Two main methods of mitochondrial replacement—pro-
nuclear transfer (PNT) and maternal spindle transfer 
(MST)—are currently under development as potential 
germline therapies for eliminating some forms of mito-
chondrial disease. Hyslop et  al. [1] examined the con-
sequences for early stage embryos following an ‘early’ 
version of PNT (termed ePNT), where zygotes had 
completed meiosis but not yet undergone mitosis. Gene 
expression profiles were obtained from single cell sam-
ples of blastocysts created using four different main 
methods: ePNT of oocytes from two different unrelated 
women (heterologous, n  =  9), unmanipulated controls 
(n = 3), and two types of procedural controls—ePNT of 
oocytes from the same donor (autologous, n =  1), and 
ePNT of oocytes from two related sisters (homologous, 
n =  1). Including autologous and heterologous controls 
potentially enables the authors to disentangle the effects 
of the ePNT procedure itself from any effects that may 
arise from switching the nuclear genomes between differ-
ent mitochondrial genetic backgrounds. This mitonuclear 

mismatching is a potential safety concern for the clinical 
implementation of any of the various versions of mito-
chondrial replacement therapy [2, 3]. RNAseq data from 
blastocyst-derived single cells were explored via princi-
ple component analysis (PCA), t-distributed stochastic 
neighbour embedding, and unsupervised hierarchical 
clustering. On the basis of these exploratory analyses, the 
authors concluded that gene expression levels were indis-
tinguishable between control and ePNT blastocysts.

However, there a number of shortcomings to the ana-
lytical approaches undertaken. First, the power to detect 
differences between treatment groups is low due to the 
small number of biologically independent samples, which 
is at the level of blastocyst and not single cell sample. For 
instance, a test of the mitonuclear mismatching hypothe-
sis would compare nine heterologous versus a maximum 
of two autologous/homologous blastocysts. Second, no 
statistical modeling of treatment effects was conducted, 
which obviously precludes the possibility of making any 
conclusions about whether or not there are statistical dif-
ferences overall, or between specific treatment groups. 
The analyses only extend as far as plotting the results 
of a principal components analysis (PCA), which is a 
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variance-orientated dimension reduction technique that 
can be useful for preliminary visualization of data.

We investigated these issues using simulated datasets 
and subsequent power analysis and principal compo-
nents analysis, and conclude that based on the number of 
samples included and the magnitude of effect sizes that 
might reasonably be expected to be present, the study is 
unable to provide clear evidence that the manipulated 
samples are indistinguishable from controls.

Methods
The power to detect differential gene expression between 
treatments was examined via simulation, where simu-
lated datasets based on the experimental design used 
here were analysed for differences between treatments 
using a mixed effects linear model. In order to resemble 
a transcriptomic analysis of differential gene expression, 
simulations were ran in batches of 100 (i.e. analogous to 
analysing 100 genes) and the power was calculated from 
each batch as the percentage of significant tests. These 
batches were repeated to produce 100 power estimates 
from simulated data. Two sets of simulations were ran: 
Set 1 tested a range of effect sizes, and Set 2 tested a 
range of sample sizes. All analyses used R v3.2.1 and the 
‘lmer’ mixed modelling function in the ‘lme4’ package [4]. 
Methods are described below, and annotated R code that 
also generates two plots is provided in Additional file 1.

Each simulated dataset was set up by initially specify-
ing a small effect size for differences in gene expression 
between cell types, variance estimates (based on the 
median gene expression variance calculated from sup-
plementary data in Hyslop et  al. [1]) for both the over-
all error variance and the variance between blastocysts, 
and the effect size for treatment. In Set 1, the effect size 
for treatment was tested for all values between 1 and 10, 
whereas in Set 2, the effect size for treatment was fixed 
at 2. The effect sizes as shown are unstandardized, but 
when standardized using the error variance specified in 
the models, i.e. with a standard deviation = 10, an effect 
size of 1 is approximately d = 0.1 (very small; see Cohen 
[5] for more details on d, which provides an indication of 
standardized differences in mean values between groups) 
and an effect size of 10 is approximately d  =  1 (very 
large).

Next, the experimental design for each simulated data-
set was set up as a balanced design, based on the num-
bers of samples in Hyslop et al. [1] (although the actual 
study is unbalanced). The first set of simulations used 
8 blastocysts with 4 samples from each blastocyst (by 
comparison, Hyslop et  al. [1] successfully sequenced 
RNA from 10 grade A–D blastocysts, with between 1 
and 11 samples sequenced from each). In the simulated 

data, samples were split across a fully factorial design 
between four different cell types (primitive endoderm, 
epiblast, trophectoderm and ambiguous) and four dif-
ferent treatments (control, autologous, homologous and 
heterologous). These factors represent the four cell types 
and four treatments in Hyslop et al. [1], although samples 
were unbalanced across these factors. As in the study, all 
samples from the same blastocyst were under the same 
treatment. Set 2 of simulations varied the total number of 
blastocysts, but scaled the experiment to have the same 
fully factorial design as the Set 1 simulations. Note that 
simulations were run with an unbalanced design that 
more closely matched the variable levels of replication in 
Hyslop et al. [1], and very similar power estimates were 
obtained.

To simulate the data, gene expression values were gen-
erated as the sum of cell type and treatment effects (cal-
culated using the effect sizes), as well as blastocyst and 
error variance estimated from the data in Hyslop et  al. 
[1]. Note that the study used multiple controls within 
these four treatments, and so differences in gene expres-
sion might only be expected to occur between some of 
the four levels of treatment, rather than between all. 
However, for completeness the simulations build in dif-
ferences between all four treatment groups. If anything, 
this generates more defined differential gene expression 
between groups than might be expected in the real data. 
The data was analysed in a mixed linear model as follows:

where Y is the simulated expression data, T and C are 
4-level fixed factors representing treatment and cell type, 
respectively, and B is a random factor representing blas-
tocyst ID. P values for the treatment effect were obtained 
by model simplification via the ‘anova’ model comparison 
in R [6]. This simulation process was re-run separately 
for treatment effect sizes 1–10 (assuming 8 blastocysts; 
Set 1), and then separately for 48, 96, 144, 192 and 240 
blastocysts (assuming a treatment effect size of 2; Set 2). 
Results are shown as the mean of 100 power estimates for 
each effect size (Set 1) and the mean of 100 power esti-
mates for each blastocyst sample size (Set 2), with 95% 
confidence intervals.

In the original manuscript, linear models such as those 
simulated here were not used to determine significance 
of differential expression between treatments. Instead, a 
principal components analysis (PCA) of the gene expres-
sion data was carried out, and the resulting scores of each 
sample along principal component vectors were plot-
ted in order to visualize and distinguish between sam-
ples based on treatment group. We therefore followed 
this approach with a final set of simulations, where we 

Y ∼ T + C + B+ ε
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generated gene expression values for a multivariate data-
set of 12,000 genes (the number of genes analyzed with 
PCA in Hyslop et al. [1]). This data simulation was car-
ried out exactly as previously, with only one alteration 
to the code: from one gene to the next, we randomized 
the order of the treatment levels. This is an important 
consideration for a multivariate analysis, as without this 
step, we would be making the unrealistic assumption that 
every gene differed in exactly the same direction between 
treatments. We ran these simulations in a variety of sce-
narios representing different effect sizes, and different 
percentages of genes that were significantly differentially 
expressed between treatments. We ran PCA on each 
simulated dataset, and plotted the samples along PC1 
and PC2 to visualize any clustering patterns. While it is 
difficult to generalize the results of repeated runs of this 
simulation (due to the nature of PCA, different PC vec-
tors arise for each different dataset), we provide typical 
examples of plots under different simulation conditions 
and provide the R code for running them (see Additional 
file 1).

Results
The simulated analysis of differential expression between 
treatments, based on this experimental design, clearly 
demonstrates that reasonable statistical power to detect 
treatment effects would only be possible if: (1) effect sizes 
were unusually strong (Fig. 1); or (2) a far higher number 
of blastocysts were sequenced (Fig. 2).

Furthermore, PCA plots of simulated multivariate data-
sets fail to reveal any clear clustering of samples based on 
treatment group, even with significant differential expres-
sion of genes generated in the simulated data. We show 
this for scenarios where 10% of all genes (1200 of 12,000) 
have a low effect size (Cohen’s d =  0.1) for differential 
expression between treatments (Fig. 3), and where 1% of 
all genes (120 of 12,000) have a moderately strong effect 
size (d = 0.5; Fig. 4). We have also included an expanded 
set of scenarios in Additional file 2. These examples make 
it clear that even when significant gene expression differ-
ences exist between treatments, the approach of plotting 
principal components to visualize clustering can lead to 
misleading conclusions about differential gene expres-
sion. Such plots can be very useful for visualizing data, 
but should absolutely be coupled with thorough analy-
sis of the data (as with our linear model simulations) to 
determine if there are significant differences between 
groups. These plots may indicate whether or not there is 
overlap in the distribution of gene expression of different 
sample types, but as demonstrated in Figs. 3 and 4, sig-
nificant differences in average gene expression between 
groups can easily be obscured.

Conclusions
On the basis of the low power and the descriptive 
nature of the methods employed by Hyslop et  al. [1], 

Fig. 1  Simulated power based on unstandardized effect sizes. Results 
shown are the mean power estimate (±95% confidence intervals) for 
100 simulations at each effect size (ranging from 1 to 10). Effect size 
simulations use a similar experimental design and size as the experi-
ment described in Hyslop et al. [1]

Fig. 2  Simulated power based on datasets with varying number of 
blastocysts. Results shown are the mean power estimate (±95% con-
fidence intervals) for 100 simulations for each number of blastocysts 
(ranging from 8 to 240). Blastocyst number simulations use a similar 
experimental design as described in Hyslop et al. [1], but scale the 
design to increase the number of blastocyst samples
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the conclusion that blastocysts created via ePNT versus 
controls, or between the different ePNT treatments are 
indistinguishable from one another is premature until 
sufficient data is available to carry out statistical model-
ling. Any study that aims to establish whether manipu-
lations to embryos following MR can cause significant 
changes in gene expression should employ proper statis-
tical procedures for detecting possible effects, rather than 
rely on data visualization from PCA or other variance 
reduction techniques, as these methods can be mislead-
ing and miss real differences. That differences between 

cell types derived from blastocysts were apparent in PCA 
plots in Hyslop et  al. [1] does not negate the possibility 
that differences between treatments may also exist. Sam-
pling multiple cell lines from within single blastocysts 
cannot replace true biological replication. In  situations 
where sample sizes within treatment groups are logisti-
cally constrained to small absolute numbers, resampling 
methods may be a useful approach to improve statistical 
power [7].
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four different treatment groups
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