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The characterisation of microsatellite 
markers reveals tetraploidy in the Greater Water 
Parsnip, Sium latifolium (Apiaceae)
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Abstract 

Background:  The Greater Water Parsnip, Sium latifolium (Apiaceae), is a marginal aquatic perennial currently endan-
gered in England and consequently the focus of a number of conservation translocation projects. Microsatellite mark-
ers were developed for S. latifolium to facilitate comparison of genetic diversity and composition between natural and 
introduced populations.

Results:  We selected 65 S. latifolium microsatellite (MiSeq) sequences and designed primer pairs for these. Primer sets 
were tested in 32 individuals. We found 15 polymorphic loci that amplified consistently. For the selected 15 loci, the 
number of alleles per locus ranged from 8 to 17. For all loci, S. latifolium individuals displayed up to four alleles indicat-
ing polyploidy in this species.

Conclusions:  These are the first microsatellite loci developed for S. latifolium and each individual displayed 1–4 
alleles per locus, suggesting polyploidy in this species. These markers provide a valuable resource in evaluating the 
population genetic composition of this endangered species and thus will be useful for guiding conservation and 
future translocations of the species.

Keywords:  Sium latifolium, Microsatellite, Polyploid, Plant translocation, Simple sequence repeat (SSR),  
Simple tandem repeat (STR)
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Background
Plant translocation is a common occurrence, with an 
estimated 600 species of plants having been relocated 
as population introduction, re-introduction or aug-
mentation [1, 2]. Whilst a tactic for large scale habitat 
restoration is through the planting of multiple species, 
translocation is also an important conservation strategy 
for specific plants at risk [3]. Guidance on plant trans-
locations recommends consideration of genetic compo-
sition [4] however projects infrequently utilise genetic 
techniques in planning and evaluating reintroductions 
([5]; although see [6, 7] as examples).

One species that has been widely translocated in the 
UK is Sium latifolium L., the Greater Water Parsnip. S. 

latifolium is a herbaceous, marginal aquatic perennial in 
the plant family Apiaceae, tribe Oenantheae; one of nine 
species within the genus, it is found across Europe and 
Asia [8]. With large, conspicuous, umbel inflorescences 
and growing to 2  m tall [9], S. latifolium was once a 
noticeable dominant in wetland areas of England, where 
it grows in habitats of fen, pond margins and grazing 
marsh ditches [10]. However, the population of S. lati-
folium has much declined over the past 40 years, due to 
habitat loss and change in wetland management [11]. It 
is now classified as ‘endangered’ on the vascular plant red 
list for England [12]. As a response to the marked decline 
in populations, conservation projects involving translo-
cations of S. latifolium have occurred independently in at 
least seven counties of England, re-introducing the spe-
cies in regions where it has been lost or declined, how-
ever the success of these translocations has been mixed.
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The goal of this study was to generate a suite of micros-
atellite markers specifically developed for S. latifolium in 
order to evaluate and compare the genetic composition 
of populations, both old and new, with the view to guide 
practitioners in the best approaches for further translo-
cations of this species. With many independent reintro-
ductions it can also be used as a case study for exploring 
broader questions relating to genetic management of 
plant translocations.

Results
Samples of S. latifolium were collected in May 2012 and 
August 2013 (Table  1), permission for sampling was 
obtained from the landowner of each site. Three leaf-
lets per plant were preserved in silica gel and stored at 
room temperature. Prior to extraction, 10–20  mg of 
leaf tissue was frozen overnight at −80  °C before being 
homogenised at 1000 Hz for 3 min using a GenoGrinder 
2000 (Spex CertiPrep, Metuchen, NJ USA). Genomic 

Table 1  Details of Sium latifolium samples used for testing of the microsatellite primer sets and assessing the loci

Identification code for each sample, site name and county of sampled population, British national grid reference for sample location

Sample Population Location

Individual from which the microsatellite sequences were isolated

 I50 Wickhampton Marshes, Norfolk TG 43535 05018

Samples used for PCR temperature gradient testing

 G15 Sutton Fen, Norfolk TG 36511 22999

 I08 Wickhampton Marshes, Norfolk TG 43433 04160

Six unrelated individuals used initially to test for polymorphism

 B12 Tophill Low, East Riding of Yorkshire TA 07754 49673

 C12 Ouse Washes, Cambridgeshire TL 49433 89016

 D15 Romney Marsh, Kent TQ 97837 31120

 E33 Southlake Moor, Somerset ST 36427 30272

 F20 Cantley Marsh, Norfolk TG 37352 03459

 G10 Sutton Fen, Norfolk TG 36881 23345

24 individuals from one population

 I01 Wickhampton Marshes, Norfolk TG 43381 04180

 I02 Wickhampton Marshes, Norfolk TG 43318 04021

 I03 Wickhampton Marshes, Norfolk TG 43532 04032

 I04 Wickhampton Marshes, Norfolk TG 43193 03934

 I05 Wickhampton Marshes, Norfolk TG 43408 03171

 I06 Wickhampton Marshes, Norfolk TG 43471 04113

 I07 Wickhampton Marshes, Norfolk TG 43441 04132

 I10 Wickhampton Marshes, Norfolk TG 43921 04759

 I11 Wickhampton Marshes, Norfolk TG 44163 04634

 I13 Wickhampton Marshes, Norfolk TG 44177 04656

 I15 Wickhampton Marshes, Norfolk TG 43295 03952

 I16 Wickhampton Marshes, Norfolk TG 43325 04226

 I17 Wickhampton Marshes, Norfolk TG 43316 04050

 I18 Wickhampton Marshes, Norfolk TG 43291 03947

 I19 Wickhampton Marshes, Norfolk TG 43291 04157

 I20 Wickhampton Marshes, Norfolk TG 43252 03931

 I22 Wickhampton Marshes, Norfolk TG 43285 04125

 I24 Wickhampton Marshes, Norfolk TG 43295 03961

 I25 Wickhampton Marshes, Norfolk TG 44129 04558

 I26 Wickhampton Marshes, Norfolk TG 43288 04151

 I27 Wickhampton Marshes, Norfolk TG 43299 04101

 I28 Wickhampton Marshes, Norfolk TG 43250 03931

 I29 Wickhampton Marshes, Norfolk TG 43663 04256

 I30 Wickhampton Marshes, Norfolk TG 44131 04556
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DNA was isolated employing a cetyltrimethyl ammo-
nium bromide (CTAB) protocol [13], with the addition 
of 1% polyvinyl pyrrolidone (PVP) to the isolation buffer 
to remove polyphenols [14]. Once washed and air-dried, 
DNA was re-suspended in 100 µl low TE (10 mM Tris–
HCl, 0.1 mM EDTA, pH 8.4) and subsequently diluted to 
100 ng/µl with low TE.

The microsatellite library was prepared from one indi-
vidual sampled at Wickhampton Marshes, Norfolk, UK 
(52°35′N 1°35′E; sample identification code =  I50). The 
library was enriched for microsatellites, using magnetic 
beads in the hybridisation [15, 16]. An Illumina paired-
end library was created using 1 µg of the repeat-enriched 
genomic DNA. The SureSelect Library Prep Kit, ILM 
(Agilent Technologies Inc. Santa Clara, California) proto-
col was followed and 2 × 250 bp paired-end sequencing 
conducted using a MiSeq Benchtop Sequencer (Illumina 
Inc. San Diego, California).

Sequences with at least ten repeats were selected for 
primer design; primer sets were designed to amplify the 

microsatellite regions using PRIMER3 v 0.4.0 [17]. Speci-
fications for primer selection were set at a primer length 
of 16–36 base pairs (optimum 20 bp), an optimal primer 
melting temperature of 60 °C, (min–max of 59–61 °C), a 
maximum of 0.5 °C between primers, presence of a 3′ GC 
clamp, a maximum poly-X of three and the default set-
tings for all other parameters. Sixty-five primer sets were 
designed. The 5′ end of each forward primer was fluores-
cently-labelled with HEX or 6-FAM.

Microsatellites were amplified in 2-µl PCRs, including 
1 µl (100 ng) genomic DNA (air dried), 2 µl primer mix 
(forward and reverse primer at 0.2 µM) and 1 µl Qiagen 
Multiplex PCR Master Mix including HotStar Taq DNA 
polymerase (Qiagen Inc.). Covered with a thin layer of 
mineral oil, products were amplified under the following 
profile: incubate at 95 °C for 15 min, followed by 35 cycles 
of 94 °C for 30 s, selected primer temperature (51, 53 or 
58 °C, see Table 2) for 1 min 30 s and 72 °C for 1 min 30 s, 
and finally incubated at 72  °C for 10 min. The optimum 
annealing temperature for each primer set was initially 

Table 2  Details for the 15 selected, validated Sium latifolium microsatellite loci

Microsatellite loci, sequence identifier and EMBL/EBI accession number, sequence of primers, repeat motifs, optimum primer annealing temperatures (T °C)

Locus Sequence identifier and accession no. Primer sequences (5′–3′) Repeat motif T (°C)

Sla01 GWP00014, LN849725 F: [6FAM]AGACTTGTATGTCCTGCATTATGTTC
R: CAGCTGGTGAAGCCAATTTAG

(GT)13 58

Sla02 GWP00025, LN849726 F: [HEX]TTGCCTCAAGTGCAGAACAG
R: CAACCACTTACATATGTTCACAATACC

(CT)15 58

Sla03 GWP00030, LN849727 F: [6FAM]ACCAATGACAAGTGGGTTCC
R: CCCAAGATTTCCTTGAAGTACAG

(CA)28 53

Sla04 GWP00089, LN849728 F: [HEX]GATTCCCGATCTCCAATTCC
R: CGCGACATCGAAGAGTTTG

(CA)13 53

Sla05 GWP00130, LN849729 F: [6FAM]AGAAGCACGCTATTGCACTG
R: CATTTGTCAGTTGTCACATACCC

(GT)10 58

Sla06 GWP00133, LN849730 F: [6FAM]TTGCAAGGAAACTGAGACCAC
R: TGGACATTGTACCAGCTACCC

(CT)14 51

Sla07 GWP00178, LN849731 F: [6FAM]GGACATCTAAGCATAAAGTGCAATAAC
R: TTGTTTCTAGCAGAGGTAGCTTGAC

(CA)18 58

Sla08 GWP00226, LN849732 F: [HEX]CAGATGGATAGTTGAAACCAAGTG
R: TTAAGTTAGACAAGCGGCCTTC

(CA)12 51

Sla09 GWP00268, LN849733 F: [HEX]CAGCAAGAATTGCCAATCG
R: AATGGTGAAGGGAAATGCTG

(GT)12 58

Sla10 GWP00318,LN849734 F: [HEX]TTACTTGCCCACGCTTCTG
R: TCTTCTAAAGCAGGGGAGTACG

(CT)15 51

Sla11 GWP00319, LN849735 F: [6FAM]TGATACGGTGGATGATGAGC
R: TGCATTATATGCGTCAACTGG

(GT)12 (GA)8 58

Sla12 GWP00373, LN849736 F: [6FAM]GCCACAGTAGATCCATTACTCAAC
R: TTTGACACAGATTGGAATCCTC

(GT)16 51

Sla13 GWP00423, LN849737 F: [HEX]CCTTAACTAAAGACTAAAGACTGTGGAAC
R: ACTTGGTCGGTTATGTTGTGG

(GA)13 58

Sla14 GWP03443, LN849738 F: [6FAM]CTGGCAAACACACGCAAC
R: TTTCTTTGTTTGGGTTTGATCTC

(GA)13 58

Sla15 GWP03601, LN849739 F: [6FAM]TTGTAAACGCCCTTACCATTG
R: AATAAACCATGAACAGATGAAGATTG

(GT)15 51
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selected by testing a temperature gradient on two sam-
ples (Table 1), this varied the annealing temperature for 
each well across 12 rows from 50 to 70 °C. PCR products 
were diluted with double-deionized H2O (1:160). They 
were visualised on an ABI 3730 48-well capillary DNA 
Analyser (Applied Biosystems Inc. California, USA) and 
sized with a ROX-labelled size standard. Allele sizes were 
scored using GENEMAPPER v3.7 software (Applied Bio-
systems Inc. California, USA).

All primer sets were initially tested in six unrelated 
individuals (Table  1), each from a different geographic 
population in the UK. Markers failing to amplify or 
appearing monomorphic at this stage were discarded. 
The remaining primer sets were then tested in a further 
24 individuals from the same population as the individual 
sequenced to isolate the microsatellites (Wickhampton 
Marshes, England; I50; Table  1) to fully evaluate their 
characteristics and usefulness. Overall, of the 65 primer 
pairs tested, 15 (23%) loci were polymorphic and easily 
scoreable (Table  2). The remainder were monomorphic 
(18%), not useable due to stutter and scoring difficulty 
(31%) or had poor/no amplification (28%).

To estimate genotyping error, extraction and scoring 
for a proportion of individuals was repeated to compare 
the data. The mean scoring error was found to be 0.02% 
(calculated as per [18]). All of the 15 markers tested dis-
played more than 2 alleles in multiple individuals and 

all individuals tested displayed more than 2 alleles in 
several markers, suggesting S. latifolium is polyploid 
(for data, see Additional file 1). A maximum of 4 alleles 
were observed per individual indicating tetraploidy in 
this species (see Additional file  2). Characteristics of 
each microsatellite locus were calculated for S. latifo-
lium samples using the R package polysat [19, 20]. The 
number of alleles per locus ranged from 8 to 17 and 
the mean average number of alleles was 12 (Table  3). 
Observed heterozygosity per locus ranged from 0.88 
to 1.00, with a mean average of 0.99 (Table  3). Due to 
polyploidy and unknown inheritance patterns, devia-
tion from Hardy–Weinberg equilibrium could not be 
calculated nor could the frequency of null alleles be 
estimated [21].

Initial measures of genetic diversity were calculated for 
the genotyped population (Wickhampton Marshes) using 
the programme GenoDive [22]. In this population, the 
mean average number of alleles per locus was 9.13 and 
observed heterozygosity was 0.976. Genetic distances 
between individuals within the library population were 
calculated (Bruvo distance, R package polysat [20, 23]) 
and visualised by ordination (R package Vegan [24]). The 
microsatellite markers revealed variation in the genetic 
distance between individuals within a single population 
and identified clusters of individuals with similar geno-
types (Fig. 1).

Table 3  Characterisation of  15 dinucleotide microsatellite loci for  the Greater Water Parsnip Sium latifolium, all tested 
on 24 individuals sampled at Wickhampton Marshes, reveals tetraploidy in this species

Microsatellite loci, expected and observed allele sizes (with the sequenced allele underlined*; bp) of individual from which the microsatellite sequences were isolated 
(individual I50, sampled at Wickhampton Marshes, Norfolk), number of individuals successfully genotyped (n), number of alleles (k), allele size range (bp), observed 
heterozygosity (Ho). Exp. I50 (bp), Expected allele size of I50, Obs. I50 (bp), Observed amplified allele sizes of individual, I50, *Minor size differences (bp) were observed 
between the expected size of the allele (based on sequencing) and observed allele size (based on ABI genotyping). This error is caused by (1) the presence of the 
fluorescent dye label (6FAM and HEX) and/or (2) sequence misalignment due to the repeat region when creating the consensus sequence from the two paired-end 
complementary sequences

Locus Fluoro 
dye

Exp. I50 
(bp),

Obs. I50 (bp). N K Observed allele 
size range (bp)

Number of individuals 
with 1–2 alleles

Number of individuals 
with 3–4 alleles

Ho

Sla01 [6FAM] 192 191, 193, 195 23 12 189–213 0 23 1.000

Sla02 [HEX] 154 132, 150, 154, 164 24 17 132–180 4 20 1.000

Sla03 [6FAM] 241 230, 232, 240 23 16 202–242 10 13 1.000

Sla04 [HEX] 196 180, 188, 194* 24 9 180–204 9 15 1.000

Sla05 [6FAM] 248 244, 248, 250 23 8 242–254 8 15 0.958

Sla06 [6FAM] 154 130, 138, 150, 154 23 9 130–158 5 18 0.958

Sla07 [6FAM] 228 203, 207, 224* 24 12 203–224 2 22 1.000

Sla08 [HEX] 115 104, 110, 112* 24 15 94–136 3 21 1.000

Sla09 [HEX] 180 168, 182* 24 10 166–186 21 3 0.875

Sla10 [HEX] 142 132, 141 23 13 128–170 14 9 1.000

Sla11 [6FAM] 148 136, 142, 148 22 11 128–156 8 14 1.000

Sla12 [6FAM] 107 92, 106, 108, 112 22 13 90–116 3 19 1.000

Sla13 [HEX] 121 117, 128* 23 11 110–136 11 12 1.000

Sla14 [6FAM] 161 158, 160, 168 22 14 134–176 4 18 1.000

Sla15 [6FAM] 106 101, 105, 107, 119 23 12 83–119 7 19 1.000
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Conclusions
We have successfully developed the first set of microsat-
ellite markers for S. latifolium. The 15 loci amplified reli-
ably and have been shown to be sufficiently variable for 
distinguishing between individuals (Fig. 1). These will be 
helpful in providing a genetic context for planning and 
managing further reintroductions of S. latifolium. Addi-
tionally, using S. latifolium as an example species, these 
microsatellite loci will also be helpful in interpreting the 
effects of genetic diversity and source population compo-
sition on plant reintroductions.

We also found each S. latifolium individual genotyped 
displayed 1–4 alleles. We conclude that this is evidence of 
tetraploidy, a trait not previously reported in this species. 
Polyploidy occurs occasionally through the Apiaceae fam-
ily, in just over 10% of species [25]. In other species of Sium 
intraspecific variation in ploidy levels has been recorded, 
with local polyploid cytotypes found within a diploid 
species [26]. A chromosome count of 12 or 20 has been 
reported in S. latifolium [27]. As these previous cytological 
studies used specimens from continental Europe, the chro-
mosomal characteristics of UK S. latifolium is unknown. 
Differences in records suggests that there may be variation 
within the species and all reported counts are a multiple of 
4, indicating that tetraploidy is possible. Additional cyto-
logical analyses would also consider historical polyploidy 
or aneuploidy as causes of the multiple alleles observed. 
Further work on S. latifolium is needed to determine the 
nature of the ploidy (i.e. the inheritance type) and the pat-
terns of ploidy throughout the species’ geographic range.
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