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genomes of three deep‑sea, sulfur‑oxidising 
bacteria: “Candidatus Ruthia magnifica”, 
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Abstract 

Objective:  “Candidatus Ruthia magnifica”, “Candidatus Vesicomyosocius okutanii” and Thiomicrospira crunogena are 
all sulfur-oxidising bacteria found in deep-sea vent environments. Recent research suggests that the two symbiotic 
organisms, “Candidatus R. magnifica” and “Candidatus V. okutanii”, may share common ancestry with the autonomously 
living species T. crunogena. We used comparative genomics to examine the genome-wide protein-coding content 
of all three species to explore their similarities. In particular, we used the OrthoMCL algorithm to sort proteins into 
groups of putative orthologs on the basis of sequence similarity.

Results:  The OrthoMCL inflation parameter was tuned using biological criteria. Using the tuned value, OrthoMCL 
delimited 1070 protein groups. 63.5% of these groups contained one protein from each species. Two groups con-
tained duplicate protein copies from all three species. 123 groups were unique to T. crunogena and ten groups 
included multiple copies of T. crunogena proteins but only single copies from the other species. “Candidatus R. mag-
nifica” had one unique group, and had multiple copies in one group where the other species had a single copy. There 
were no groups unique to “Candidatus V. okutanii”, and no groups in which there were multiple “Candidatus V. okutanii” 
proteins but only single proteins from the other species. Results align with previous suggestions that all three species 
share a common ancestor. However this is not definitive evidence to make taxonomic conclusions and the possibility 
of horizontal gene transfer was not investigated. Methodologically, the tuning of the OrthoMCL inflation parameter 
using biological criteria provides further methods to refine the OrthoMCL procedure.

Keywords:  “Candidatus Ruthia magnifica”, “Candidatus Vesicomyosocius okutanii”, Thiomicrospira crunogena, 
Thiotrichales, Sulfur-oxidising bacteria, Raspberry Pi, OrthoMCL, Comparative genomics, Paralogs, Orthologs
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Introduction
“Candidatus Ruthia magnifica” strain Cm, “Candida-
tus Vesicomyosocius okutanii” HA and Thiomicrospira 
crunogena XCL-2 are all sulfur-oxidising bacteria found 
in deep-sea vent environments.

“Candidatus R. magnifica” and “Candidatus V. okuta-
nii” live symbiotically in the gill epithelial cells of giant 
clam species: “Candidatus R. magnifica” in Calyptogena 
magnifica [1] and “Candidatus V. okutanii” in Calyp-
togena okutanii [2]. It is predicted that they are predomi-
nantly transmitted vertically via their host’s eggs [3, 4]. 
These hosts have reduced or vestigial digestive tracts 
and are therefore dependent on their symbionts for their 
nutritional requirements. As both giant clam species 
reside in deep-sea vent environments their symbionts 
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are able to utilise the sulfur, produced by the vents, to 
provide their hosts with carbon and other nutrients [1, 
2]. The symbionts’ dependence on the host varies, for 
example “Candidatus R. magnifica” encodes pathways 
to synthesise 20 amino acids [1], whereas “Candidatus 
V. okutanii” encodes pathways for 18 amino acids [2]. It 
has been hypothesised that missing essential genes in the 
symbiont may help maintain a stable symbiont popula-
tion in a host cell [2].

Recent sequence-based reconstructions of phyloge-
netic trees suggest that “Candidatus R. magnifica” and 
“Candidatus V. okutanii” form a clade with each other, 
and a broader clade with T. crunogena [5, 6]. T. crunogena 
lives independently, though in the same deep-sea vent 
environments.

Preliminary to detailed studies on ancestry and adapta-
tion among these three taxa, we can predict paralogs and 
orthologs across their genomes. Paralogs are genes aris-
ing by a duplication event within a species, and orthologs 
are genes in different taxa whose common ancestor is a 
gene present in the most recent common ancestral taxon 
[7, 8]. Although these definitions are explicitly phyloge-
netic, requiring a gene tree and a species tree, prediction 
of orthologous groups is often performed on the basis of 
sequence similarity alone. We investigated the evolution 
of the protein-coding gene content across all three species 
using OrthoMCL [9] and BLAST [10], to create protein 
groups based on sequence similarity, and UniProt [11], to 
assign functions to these groups.

Compared to an earlier comparative genomics study 
including the three species [12], our methodology allows 
more detailed investigation of variation in gene copy 
number. In contrast to purely reciprocal-best methods 
which predict only 1:1 orthologous relationships across 
taxa, OrthoMCL groups putative paralogs into ortholo-
gous groups of two or more sequences, imposing no 
upper limit on group size and no requirement that each 
group be present in each species.

Main text
Methods
The 4273π variant of the Raspbian Linux operating sys-
tem [13] was used on a Raspberry Pi computer (Version 
1, Model B, Revision 2.0). Genome-wide protein sets for 
“Candidatus Ruthia magnifica” strain Cm, “Candida-
tus Vesicomyosocius okutanii” HA and Thiomicrospira 
crunogena XCL-2 were downloaded, in FASTA format, 
from the Ensembl genomes database (http://ensem-
blgenomes.org) [14, 15]. OrthoMCL software (http://
orthomcl.org) [9] and MCL [16] were used to delimit 
protein groups based on sequence similarity.

The OrthoMCL procedure was followed as outlined in 
the OrthoMCL user guide, with the exception of using 

the substitution matrix BLOSUM45 for the ‘all-versus-all’ 
NCBI BLAST [10] and omitting BLAST’s  -z parameter; 
and for our final analysis, the inflation value (I) was set to 
1.4 when running MCL.

As the inflation value decreases, sequences are included 
in fewer, larger groups, reducing the tightness and granu-
larity of the delimited groups. To determine the optimal 
value of the inflation parameter, first a range of values 
were tested (I = 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 
4, 6, 10 and 12). Annotated functions of the first (larg-
est) three protein groups were examined using UniProt 
(http://uniprot.org) [11]. This revealed that only val-
ues 1.2–1.9 gave rise to groups that are both function-
ally cohesive and inclusive. Within this range, group 1, 
for example, contains diguanylate phosphodiesterases/
cyclases (Table 1) but when I is increased to 2 these are 
split into different groups. Furthermore, when I = 1.1 pro-
teins with different functions (transcriptional regulators—
winged helix family) are also included within this group.

Results using I = 1.2, 1.3 and 1.4 gave rise to a group 
which was not present using other values. It had multi-
ple copies of “Candidatus R. magnifica” proteins but only 
single copies of “Candidatus V. okutanii” and T. cruno-
gena proteins. UniProt suggested that these proteins had 
the same function (histidinol-phosphate aminotrans-
ferases) but increasing the I value split them up into dif-
ferent groups. Hence on biological grounds, I > 1.4 was 
rejected. I = 1.4 was used for the final analysis presented 
here, as it gave the strongest restraints on group forma-
tion while still maintaining this aminotransferase group 
(Table 1, Group 27).

Once groups were delimited, a Perl script, modified 
from [17], was used to count the number of times each 
species was represented in each protein group [15]. To 
verify the reliability of the script, our final OrthoMCL 
groups file was used as input for an independently-writ-
ten protein-counting script (Kevin Kiesworo, unpub-
lished) and the same counts were obtained. Additionally, 
the OrthoMCL groups file from a similar study on dif-
ferent taxa (Hannah Currant, unpublished) was used as 
input for our script, and the same counts were obtained 
as in that study.

Functions of both the largest and most interesting 
groups were then inferred by searching for protein acces-
sions in UniProt: group members were searched until a 
common function was found between at least four pro-
teins, or for smaller groups all members were searched 
(Table 1).

Results
OrthoMCL predicted 1070 protein groups based on 
sequence similarity [15]. 63.5% of these contained a sin-
gle protein from each of the three species. Two groups 
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had duplicate protein copies in all three species (Table 1). 
T. crunogena had 123 unique groups, and multiple cop-
ies in ten groups that only had single copies in the other 
two species. “Candidatus R. magnifica” had one unique 
group, and had multiple copies in one group where the 
other species had a single copy. “Candidatus V. okutanii” 
had no unique groups. Nor did it have multiple copies in 
any groups that only had single protein copies from the 
other species. There were no groups that contained mul-
tiple protein copies from two species and one copy in the 
third (Table 2).

Discussion
Similarities between all three species
679 of the 1070 protein groups delimited by OrthoMCL 
(63.5%) contained a single protein copy in each of the 
three species. This high degree of similarity could be a 
consequence of common ancestry, horizontal transfer in 
a shared habitat, or most likely a mixture of both.

All three species inhabit deep-sea vent environments 
which are highly variable and have constantly fluctuat-
ing factors such as sulfur and carbon concentrations [18]. 
In order to survive, the organisms must possess meth-
ods that allow them to deal with such fluctuations. One 
shared process, for example, is their ability to oxidise the 
sulfur supplied by deep-sea vents to fix carbon for use in 
cellular functions.

Two groups were predicted to contain duplicate pro-
tein copies in all three species (Table  1, Groups 9 and 
10). These are consistent with duplication in a common 
ancestor, with subsequent speciations, although our cur-
rent work does not distinguish this from other possibili-
ties such as horizontal transfer.

All three species have a duplicate copy of elongation 
factor Tu (Table  1, Group 9). These paralogs are found 
in all proteobacteria and it has been hypothesised, there-
fore, that this duplication event preceded the divergence 
of this phylum [19]. It has been shown that the tuf genes 
that encode these proteins undergo gene conversion [20] 
which inhibits any divergence, and therefore sub- or neo-
functionalisation, of the two genes [21]. The persistence 
of the duplicate may therefore indicate high levels of 
expression. Detection of this known group is promising 
in regards to the reliability of our methods.

Each species also has a duplicate in the group of nitro-
gen regulatory proteins (P-II; Table 1, Group 10). One of 
these copies, in “Candidatus V. okutanii”, is the product 
of the glnK gene. This gene seems to be commonly dupli-
cated in some sub-divisions of proteobacteria [22] and its 
evolution seems to be associated with that of the amtB 
ammonium transporter gene, to which it is physically and 
functionally linked [23]. Interestingly, these ammonium 
transporters make up Group 11 (Table  1) and although 
there are four copies in T. crunogena, the other species 
have no duplicates. This would be consistent with genome 
reduction due to a symbiotic lifestyle [2], although our 
current work cannot distinguish this with certainty.

Unique to T. crunogena
A large number of protein groups (123) are found only in 
T. crunogena (Table 2). Also, in 10 groups, T. crunogena 
has multiple protein copies where the other species only 
have one copy each (Table 1). As the only independent-
living species studied, T. crunogena may require a larger 
number of genes and proteins for survival. The other, 
symbiotic, organisms can rely on their hosts to provide 
some essential functions and, therefore, loss of some 
genes could prove to be energetically favourable [2]. 
There is also a lower total protein count for these species 
(976 and 937 protein sequences, compared to 2196 in T. 
crunogena).

Unique to “Candidatus R. magnifica”
“Candidatus R. magnifica” has one unique group that 
consists of glycosyl transferases (Table 1, Group 746).

There was also one group delimited that had multiple 
“Candidatus R. magnifica” proteins and only single pro-
teins from the other species (Table 1, Group 27). This is a 
group of histidinol-phosphate aminotransferases.

Unique to “Candidatus V. okutanii”
“Candidatus V. okutanii” has no unique groups or 
paralogs.

Conclusions
The number of unique protein groups found in T. cruno-
gena may highlight its independent lifestyle that is very 
different from the other, symbiont, species. On the other 

Table 2  Numbers of groups paralogous in one or two species

Species No. of groups of two or  
more proteins unique  
to the given species

No. of groups with multiple  
copies in the given species but single 
copies in both other species

No. of groups with a single copy 
in the given species but multiple 
copies in both other species

T. crunogena 123 10 0

“Candidatus R. magnifica” 1 1 0

“Candidatus V. okutanii” 0 0 0
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hand, all three species shared many groups in common 
that could be indicative of a shared common ancestor, as 
was previously hypothesised [5, 6]. However, sequence-
based orthology prediction is not sufficient to resolve 
taxonomy [24].

Methodologically, our work extends comparative 
genomics on the low-cost Raspberry Pi computer in two 
main ways. Firstly, three species were used, as opposed to 
two species in earlier studies [17, 25]. With faster, more 
recent versions of the hardware, such as the Raspberry Pi 
3, even larger numbers of species would be possible.

Secondly, in our current study the OrthoMCL inflation 
parameter has been tuned using the biological criterion 
of functional coherence of the first (largest) three protein 
groups. This contrasts with algorithmic criteria used by, 
for example, [26] and [27], and may be generalizable to 
other methods for delimiting groups that also use MCL 
[16], for example Orthofinder [28]. There may be no uni-
versally optimal way to set the inflation parameter. How-
ever, biological criteria will always be valuable, whether 
used alone or to verify an algorithmic approach. Meth-
odologically, combining biological criteria to guide the 
choice of inflation parameter with other refinements in 
family prediction (e.g. [29]) may be a promising future 
direction.

Limitations
The method used only utilises sequence-based orthology 
prediction to produce protein groups, without phylogeny 
reconstruction, and so it is not sufficient to resolve tax-
onomy [24]. In accordance with the International Code 
of Nomenclature of Bacteria [30], other information such 
as metabolic and reproductive features must be known 
before formal taxonomy can be assigned.

We are also unable to rule out the possibility that the 
similarities in the protein coding content of these three 
genomes were due to horizontal gene transfer. It is 
thought that these events are less common as symbionts 
of vesicomyid clams (such as Calyptogena magnifica and 
Calyptogena okutanii) are found in their host oocytes—
suggesting that vertical transmission is predominant [3, 
4], presumably reducing opportunities for horizontal 
gene transfer. However, there is also evidence that lat-
eral transmission, and therefore horizontal gene transfer 
events, can occur [31]. Analysis of horizontal transfer 
among these species and their relatives, including investi-
gation of the detail of horizontal transfers [32], would be 
a promising future direction.
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