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Abstract 

Background:  Cell proliferation is a key characteristic of eukaryotic cells. During cell proliferation, cells interact with 
each other. In this study, we developed a cellular automata model to estimate cell–cell interactions using experimen‑
tally obtained images of cultured cells.

Results:  We used four types of cells; HeLa cells, human osteosarcoma (HOS) cells, rat mesenchymal stem cells (MSCs), 
and rat smooth muscle A7r5 cells. These cells were cultured and stained daily. The obtained cell images were bina‑
rized and clipped into squares containing about 104 cells. These cells showed characteristic cell proliferation patterns. 
The growth curves of these cells were generated from the cell proliferation images and we determined the doubling 
time of these cells from the growth curves. We developed a simple cellular automata system with an easily accessible 
graphical user interface. This system has five variable parameters, namely, initial cell number, doubling time, motil‑
ity, cell–cell adhesion, and cell–cell contact inhibition (of proliferation). Within these parameters, we obtained initial 
cell numbers and doubling times experimentally. We set the motility at a constant value because the effect of the 
parameter for our simulation was restricted. Therefore, we simulated cell proliferation behavior with cell–cell adhesion 
and cell–cell contact inhibition as variables. By comparing growth curves and proliferation cell images, we succeeded 
in determining the cell–cell interaction properties of each cell. Simulated HeLa and HOS cells exhibited low cell–cell 
adhesion and weak cell–cell contact inhibition. Simulated MSCs exhibited high cell–cell adhesion and positive cell–
cell contact inhibition. Simulated A7r5 cells exhibited low cell–cell adhesion and strong cell–cell contact inhibition. 
These simulated results correlated with the experimental growth curves and proliferation images.

Conclusions:  Our simulation approach is an easy method for evaluating the cell–cell interaction properties of cells.
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Background
Cell culture techniques enable us to directly observe cells 
in vitro. Today, we can culture many types of cells includ-
ing triploblastic, stem, and cancer cells. These cells can 
be viable and can proliferate under 2 dimensional (2D) 
cell culture conditions. Cells demonstrate their unique 
characteristics under such conditions; in particular, pro-
liferation is one of the unique characteristics of cultured 

cells. During cell proliferation, cells not only divide but 
also move and interact with each other. These elementary 
steps of cell proliferation demonstrate the characteristics 
of different cell types [1].

Cell culture is often used in cell assay systems, such as in 
evaluating the effect of drugs on cancer cells [2, 3]. Con-
sidering the necessity for reduction of animal experiments, 
the demand for in  vitro cell assay systems for drug and 
cosmetic development has increased [4, 5]. The param-
eters available for evaluation from the cell assay system 
are cell growth rate, motility, and gene expression [6–9]. 
On the other hand, cell–cell interactions are also impor-
tant parameters for cell characterization. Epithelial and 
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endothelial cells show high intercellular adhesion and they 
ultimately form tight junctions [10, 11]. Fibroblasts and 
smooth muscle cells adhere to each other and form cell 
aggregates [12, 13]. In the process of epithelial-to-mesen-
chymal transformation, which is essential for animal and 
cancer development, intercellular adhesiveness decreases 
[14]. Increasing the density of endothelial or smooth mus-
cle cells increased cell–cell contact and decreased cell 
spreading, leading to growth arrest [15]. Furthermore, 
the homotypic intercellular adhesive forces between ecto-
derm, mesoderm, and endoderm cells are different in 
each other [16]. Although these cell–cell interactions are 
important properties of cells, they are hard to evaluate in 
standard cell assay systems. Therefore, simple methods for 
evaluating cell–cell interaction properties are required for 
the development of cell assay systems for drug screening.

Mathematical modeling and computational simula-
tion using differential equations and cellular automata 
assume an important role in experimental modeling to 
study a variety of biological events [17]. Modeling is per-
formed by abstracting some characteristic factors from 
the biological events, and the simulation displays the 
reconstruction results when those factors are used. Thus, 
modeling and computational simulation can help us to 
understand how certain biological processes occur, as 
well as inform us of the critical factors involved in these 
biological processes. There are many cellular automata 
models that can describe the population dynamics of 
cultured cells [1, 18–22]. These models capture the fea-
tures of the proliferation process and include important 
parameters (cell size, seeding density, spatial distribution 
of cells, migration, and oxygen density) necessary for pre-
diction of cell population behavior. Furthermore, there 
are some cellular automata models that include cell–cell 
adhesion effects to simulate cultured cells in 2D and 3D 
[19, 20, 23]. Therefore, using these models, we can esti-
mate the cell–cell interaction properties of cultured cells.

In this study, we developed a system for estimating the 
cell–cell interactions of cultured cells using a cellular 
automata model. To estimate the interaction parameters, 
we focused on images of cells in 2D cell culture because 
cell–cell interactions, especially cell–cell adhesion and 
cell–cell contact inhibition (of proliferation), affect the 
formation of cell aggregates. We obtained cultured cell 
images over time, and then assessed these images for cor-
roboration with the cellular automata system. Using the 
cell growth rate and seeding density, which were deter-
mined from the images, we succeeded in estimating the 
cell–cell adhesion and cell–cell contact inhibition param-
eters. This method is useful for estimating these cell–cell 
interaction properties. This method could therefore be 
used as a new cell assay system for analysis of cell–cell 
interactions during drug screening.

Methods
Materials
Male Fisher 344 rats were purchased from Japan SLC 
(Shizuoka, Japan). The rat aorta smooth muscle cell line, 
A7r5, was obtained from DS Pharma Biomedical Co. 
Ltd (Osaka, Japan). The human cervical cancer cell line, 
HeLa, and the human osteosarcoma cell line, HOS, were 
obtained from the Health Science Research Resources 
Bank (Osaka, Japan). Cell culture medium was purchased 
from Sigma-Aldrich (St. Louis, MO). Fetal bovine serum 
(FBS) was purchased from JRH Biosciences (Lenexa, KS). 
Antibiotics were purchased from Life Technologies Japan 
Ltd. (Tokyo, Japan). Other reagents were purchased from 
Wako Pure Chemical Industries Ltd. (Osaka, Japan), 
Sigma-Aldrich, and Life Technologies Japan Ltd.

Preparation and culture of rat mesenchymal stem cells
Rat mesenchymal stem cells (MSCs) were isolated and 
primarily cultured as previously described [24]. Briefly, 
bone marrow cells were obtained from the femoral shafts 
of 7-week-old male Fisher 344 rats, which were anes-
thetized and euthanized by exposing of carbon diox-
ide. The cells were obtained from at least two rats and 
pooled in order to reduce the influence of individual 
differences. The culture medium was Eagle’s minimal 
essential medium (with Earle’s Salt and l-glutamine) 
containing 15% FBS and antibiotics (100 units/mL peni-
cillin G, 100  µg/mL streptomycin sulfate, and 0.25  µg/
mL amphotericin B). The medium was replaced twice a 
week, and cells at passages 2–3 were used in this study. 
This study was carried out in strict accordance with the 
recommendations in the Guide for the Care and Use of 
Laboratory Animals of the University of Kitakyushu. The 
protocol was approved by the Committee on the Ethics of 
Animal Experiments of the University of Kitakyushu.

Cell culture
A7r5 cells, HeLa cells, and HOS cells were cultured in 
DMEM supplemented with 10% FBS and antibiotics (100 
units/mL penicillin G, 100 µg/mL streptomycin sulfate). 
The medium was replaced twice a week.

Cell staining
Cells were seeded in a 35-mm culture dish at around 
1 × 104 cells/cm2. The cells were fixed with 4% paraform-
aldehyde and stained with 0.4% trypan blue solution. The 
cells were imaged at 8.4× magnification using a stereomi-
croscope (SZX12; Olympus, Tokyo, Japan) equipped with 
a DP70 color charge-coupled device camera (Olympus).

Image extraction of cell distribution
The obtained cell images were analyzed using Image 
J software (NIH, Bethesda, MD). Each cell image was 
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split into each RGB color channel. Then, the red chan-
nel image, which was the image with the highest con-
trast against the background, was subtracted from the 
background light shadow. The image was binarized with 
the adequate threshold intensity value, which was deter-
mined by referring to the highly magnified image. The 
size of the square image was dependent on each cell type 
(rat MSC, 3.5 × 3.5 mm; Hela and HOS cells, 3 × 3 mm; 
A7r5 cells, 4 ×  4  mm). After clipping the square image 
from the binarized image, the resolution of the image 
decreased to 100  ×  100  px. The clipping cell size was 
determined by the area of approximately 1 ×  104 cells. 
We prepared more than five images for each condition.

Cell dynamics simulator
Simulator specification
The 2D cell simulator was developed using Java (Ora-
cle, Redwood Shores, CA). The cell distribution of the 
simulator was modeled by the cellular automata. The 
calculated space was set to 120 × 120 cell units and the 
displayed space on the screen was 100 × 100 cell units of 
the center of the calculated space (Fig. 1). Each unit indi-
cates whether it is occupied by cells (black point) or it is 
vacant (white point). The model includes cell movement 
and division regulated by cell–cell interactions (cell–cell 
adhesion inhibits cell movement and cell–cell contact 
inhibition inhibits cell division). One cycle of the calcula-
tion of cellular events (movement and division) indicates 
10  min in a virtual environment. Because cells in the 

early stages of cell culture exhibit a proliferation lag, we 
simulated cell proliferation behavior after 24 h of culture. 
Therefore, the cell seeding number, s0, was used to repre-
sent the cell number after 1-day culture in each cell type.

Cell dynamics
Each cell unit contacts the neighboring 8 units (Fig.  2). 
According to a previous study using cellular automata 
dynamical simulation of cell culture [21], the influence 
probabilities for the center unit from the neighboring 8 
units are 1/12 and 2/12 at a diagonal position (Pinf×) and a 
side position (Pinf+) of a center unit, respectively (Fig. 2). 
Each influence probability was derived from the ratio of 
the central angle to 2π rad on a circle with a radius equal 
to the length of one side of the unit square.

Figure  3 shows a flowchart of the cellular automata 
simulation. The method of cellular automata was applied 
in all cell occupied units.

The cell movement event is produced according to 
the probability, Pmot, which depends on the cell motil-
ity parameter mot; Pmot = 1/(6 mot). The mot means the 
time (h) for a single unit transfer of the cell on average. 
During the cell movement event, the cell can escape from 
the event according to the influence of the surround-
ing cells. The total influence of surrounding cells, Psu, is 
determined based on the influence probabilities, a diago-
nal position of cell number n×, and a side position of cell 
number n+, Psu = n× Pinf× + n+ Pinf+ = (n× + 2n+)/12.

Using the cell–cell adhesion parameter a, the cell escapes 
from the movement event with the probability, Pmotesc,

If the cell does not escape from the event, the cell 
moves around a vacant unit depending on the influence 
probabilities.

The cell division event is produced according to the 
probability, Pdiv, which depends on the cell doubling time 
(h) td,

where α (=0.7147) is the offset of the cell division due 
to overlap with the immediately preceding cell division. 
During the cell division event, the cell can escape from 
the event according to the influence of the surround-
ing cells. The total influence is determined by the influ-
ence probabilities (Pinf×, Pinf+) and the cell number of the 
diagonal position and the side position of the cell, ci = 12 
n× Pinf× +  12 n+ Pinf+ =  n× +  2 n+. According to the 
cell–cell contact inhibition parameters, the cell escapes 
from the division event with the probabilities Pci. The Pci 
can be fixed arbitrarily; but, in this study, we used four 

Pmotesc = 1−

(

1−
a

100

)12Psu

.

Pdiv = α
/

(6td),

Fig. 1  Cell proliferation simulation space. The total calculated 
space is 120 × 120 cell units. Ui,j (0 ≤ i < 120, 0 ≤ j < 120) represents 
each calculation unit. The display space is made up of the central 
100 × 100 cell units (Ui,j (10 ≤ i < 110, 10 ≤ j < 110))
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different parameters as null (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1), 
weak inhibition (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.9, 1), positive 
inhibition (0, 0, 0, 0, 0, 0, 0, 0, 0.4, 0.8, 0.95, 1), and strong 
inhibition (0, 0, 0, 0, 0, 0.3, 0.6, 0.8, 0.9, 0.96, 0.99, 1). If 
the cell does not escape from the event, one of the daugh-
ter cells occupies a surrounded vacant unit depending on 
the influence probabilities, and the other daughter cell 
occupies the unit of the original mother cell.

Estimation of cell proliferation parameters
The simulated cell proliferation parameters could be 
estimated from the growth curve and cell proliferation 
images. Cell proliferation was serially simulated with 
various cell proliferation parameters. Then, the simu-
lated cell number was evaluated and rated by comparing 
with the experimentally obtained data using least square 
analysis. Within the several higher conditions, the most 
matching parameters were finally determined by visually 
comparing the simulated cell images with the experimen-
tally obtained cell images.

Results and discussion
Analysis of cell proliferation under experimental culture 
conditions
First, we analyzed cell proliferation using four different 
types of cells: rat mesenchymal stem cells (MSCs), human 
cervical cancer HeLa cells, human osteosarcoma HOS cells, 
and rat aorta smooth muscle A7r5 cells. These cells were 
stained with trypan blue daily. The obtained cell images 

were binarized and clipped into squares of about 104 cells. 
Then, the resolution of the clipped image was decreased to 
100 × 100 px. Figure 4a shows the binarized and clipped 
images of each cell type. The appearance of the prolif-
eration process varied according to the cell type. The area 
covered by MSCs showed a mottled pattern at 4 days and 
cell-free area remained even at 7 days. HOS cells grew in 
large colonies initially, but eventually showed a conflu-
ent pattern. HeLa cells grew rapidly and quickly reached 
confluence. A7r5 cells showed sparse cell confluence after 
7 days of culture. The growth curves, calculated using num-
ber of black pixels in the cell images, are shown in Fig. 4b. 
The cell-stained pixels grew exponentially in the early phase 
of cell culture. Therefore, the transition of the pixel number 
represents the cell proliferation curve. Next, we calculated 
the doubling time and the pixel number at 24 h for each cell 
type using the pixel proliferation data from the early phase 
of the cell culture. The calculated doubling times of MSCs, 
HOS, HeLa, and A7r5 cells were approximately 27.7, 19.7, 
24.2, and 40.3 h, respectively. The pixel number at 24 h for 
each cell type was 1390, 740, 1450, and 1070, respectively. 
Using these experimental data, we analyzed the cell–cell 
interaction properties of each cell type.

Development of cell proliferation simulator
To estimate cell–cell interaction properties such as 
cell–cell adhesion and cell–cell contact inhibition, we 
constructed a simple cell proliferation simulator using 
a cellular automata model. Here, cell–cell adhesion and 

Fig. 2  Array of unit squares representing cells. One unit is in contact with the neighboring 8 units. l is the length of a unit, which is altered in each 
cell type. θ1 (π/3) and θ2 (π/6) are the angles which face to the side and the diagonal position of units, respectively. The influence probabilities from 
the neighboring units are 1/12 at a diagonal position (Pinf×) or 2/12 at a side position (Pinf+), which is determined by the angle
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cell–cell contact inhibition show cell migration inhibi-
tion and cell division inhibition, respectively. The graphi-
cal user interface of our developed system is shown in 
Fig. 5. We arranged 120 × 120 cell units of virtual space 
as cell proliferation space (Fig. 1), and a single black point 
was used to represent a single cell (Fig. 2). We assumed 
that the centered 100  ×  100 cell units of the virtual 
space reflected the binarized and clipped images of cul-
tured cells (Fig. 4a). To construct the simulator, we set 5 
parameters, which were initial cell seeding cell number 
s0, doubling time td (h), motility mot (h), cell–cell adhe-
sion a (%), and cell–cell contact inhibition Pci (detailed in 
“Methods”).

First, we showed outputs from our simulator. The 
outputs of this simulator were the cell number and cell 
image for each culture time, based on setting the above 
five parameters. Figure  6 shows results when the initial 
cell number s0 was variable. The growing cells gradually 

filled the cell culture space, eventually occupying the 
entire space (Fig.  6). Comparing low versus high s0 val-
ues, the cells with low s0 values grew and formed a large 
cell colony, whereas cells with high s0 values completely 
filled the space (Fig. 6). Figure 7 shows results when the 
doubling time td was variable. When td was set to 18 h, 
the cells occupied almost the entire culture space on 
day 5 of culture. However, when td was set to 48  h, the 
slope of the growth curve decreased and the cells could 
not fill the space by day 7 (Fig.  7). Figure  8 shows the 
results when the motility mot was variable. The growth 
curves demonstrate gradual growth when the mot value 
was high, i.e. low motility conditions (Fig.  8). Focusing 
on the growing cell images at day 4 of culture, the cells 
were well spread when the mot value was low, whereas 
they displayed a mottled pattern when the mot value 
was high (Fig. 8). Figure 9 shows the results when cell–
cell adhesion a was variable. The slope of the growth 

Fig. 3  Flow charts of the cell proliferation simulation. The left chart shows the main process and the right chart shows the cellular automata process. 
One cycle of the process is 10 min of virtual cell culture. There are two events, namely movement and division, in the cellular automata process. The 
movement event is started according to the Pmot, which is determined by the cell motility parameter mot, and terminated according to the Pmotesc, 
which is determined by the effect of cell–cell adhesion (parameter a) with surrounding cells (the parameter is Psu). The cell division event is started 
according to the Pdiv, which is determined by the cell doubling time td, and terminated according to the Pci, which is determined by the effect of 
surrounding cells
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curve gradually decreased when the value of a was high 
(Fig. 9). The cell images obtained after 4 days of culture 
showed a highly mottled pattern when the value of a was 
high (Fig. 9). Figure 10 shows the results when cell–cell 
contact inhibition Pci was variable. When the Pci was set 
as null, the cells completely filled the space after 7 days 
of culture (Fig.  10). However, when the Pci was set to 
strongly inhibited conditions, the cells proliferated but 
only sparsely filled the culture space (Fig. 10).

The initial cell number s0 and the doubling time td 
are critical factors for cell proliferation, and when they 
are changed, the form and slope of the growth curve 
drastically changes (Figs.  6, 7). In this study, these 
two parameters were determined by the experimental 
results. However, the effects of motility mot, cell–cell 
adhesion a, and cell–cell contact inhibition Pci were 
relatively restricted. These parameters affected growing 
cell patterns (Figs. 8, 9, 10). In this study, we could not 
determine these parameters from the experimentally 
obtained results. Of these parameters, mot and a are 
parameters for assessing for the cell movement event 
(Fig.  3). Comparing the cell proliferation simulation 
with variable mot to that with variable a, the impact 
of a was more significant than that of mot (Figs.  8, 9). 
Furthermore, cell motility can be determined by some 

other methods [7, 25]. Therefore, in this study, we sim-
ulated the cell proliferation behavior with the cell–cell 
adhesion a and cell–cell contact inhibition Pci, which 
are the parameters reflecting the cell–cell interaction 
activity, as variable.

Simulation of experimentally obtained cell proliferation
One of the advantages of simulation is obtaining hypo-
thetical experimental data. We can serially simulate 
various cell proliferation behaviors with varied cell prolif-
eration parameters. Therefore, we attempted to estimate 
the cell–cell interaction activity parameters, i.e. cell–cell 
adhesion a and cell–cell contact inhibition Pci, for MSCs, 
HOS, HeLa, and A7r5 cells. The experimentally obtained 
initial cell number and doubling time of each cell were 
used in the simulation. The motility was defined as a 
constant value. a varied from 10 to 40, in intervals of 10. 
Pci was defined as null, weak, positive, or strong inhibi-
tion. The simulated data were evaluated by comparison 
with experimentally obtained data. The simulated growth 
curves were ranked by least square analysis with the 
experimental growth curves. After choosing several high-
ranking conditions, we visually compared the simulated 
cell images with experimentally obtained images, and 
then determined the simulation parameters of each cell.

Fig. 4  Experimentally obtained cell proliferation images. a The cell proliferation images of each cell type. The images were processed as described 
in the “Methods” section. Each black point represents a cell. b The growth curves of each cell type. The data shows the average pixel num‑
ber ± standard deviation, which are calculated from more than five cell images for each condition



Page 7 of 15Kihara et al. BMC Res Notes  (2017) 10:283 

Figure 11 shows the simulated cell proliferation behav-
iors of each cell type. The simulated growth curves fit 
with the experimental data for each cell type (Fig.  11). 
With regard to the cell growth images, simulated images 
roughly resembled the experimental images for each cell 
type. Simulated MSCs demonstrated a high cell–cell 
adhesion (a =  40) and positive cell–cell contact inhibi-
tion (Fig. 11a). These cells exhibited fine mottled patterns 
of cell growth at day 3, and they did not reach confluence 
at day 7 (Fig. 11a). The fine mottled pattern was similar to 
that observed in the experimentally obtained cell prolif-
eration images. Simulated HOS cells showed low cell–cell 
adhesion (a =  20) and weak cell–cell contact inhibition 

(Fig. 11b). The simulated growth curve highly correlated 
with the experimental results. However, the experimen-
tal HOS cells exhibited a large colony cell pattern at day 
3, but the simulation could not reproduce the cell pat-
terns (Fig. 11b). The simulated HeLa cells demonstrated 
low cell–cell adhesion (a =  20) and weak cell–cell con-
tact inhibition (Fig.  11c). The simulated growth curve 
and cell images correlated with the experimental results 
(Fig.  11c). The simulated A7r5 cells demonstrated low 
cell–cell adhesion (a =  20) and strong cell–cell contact 
inhibition (Fig. 11d). The simulated growth curve of A7r5 
cells also correlated with experimentally obtained results. 
The simulated cell images showed sparse cell confluence 

Fig. 5  Graphical user interface (GUI) of the simulator. Proliferating cell image and cell numbers are uploaded on the screen. All parameters can be 
uploaded to the GUI directly
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with many vacant cell spaces at the later stages of cell 
culture, which was consistent with the experimentally 
obtained A7r5 cell pattern at day 7 (Fig. 11d).

In our system, the initial cell number and cell doubling 
time were experimentally obtained for each cell type. 
These two parameters most significantly affected the 
cell growth curve, and thus our simulated growth curves 
highly correlated with those that were experimentally 
obtained (Fig. 11). However, simulated images of growing 
cells were not always consistent with the experimentally 

obtained images. Cell–cell adhesion affected the fine 
mottled formation of cell patterns, and cell–cell contact 
inhibition affected cell confluency at a later stage of cell 
culture (Figs.  9, 10). Therefore, we successfully simu-
lated MSCs, which formed fine mottled patterns; HeLa 
cells, which demonstrated global proliferation; and A7r5 
cells, which reached highly sparse confluence (Fig.  11). 
However, we could not fully simulate HOS cell prolifera-
tion, which demonstrated a large colony growth pattern 
(Fig. 11). The formation of large colonies requires a small 

Fig. 6  Cell proliferation simulation with varying initial cell numbers. The upper graph shows the growth curves and the lower images are the prolifer‑
ating cell images for each condition. The initial cell number s0 ranged from 200 to 2000. Other parameters were constant values: td, 24; a, 20; mot, 4; 
Pci, weak
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number of initial seeding cells (Fig. 6). However, the ini-
tial cell number of HOS cells was about 740 (Table  1), 
which is higher than the initial cell number forming the 
large cell colony (Fig.  6). This inconsistency is attribut-
able to the cell attachment behavior to the culture sub-
strate. The experimentally obtained cell images of HOS 
cells at day 1 showed many small cell aggregations that 
contain several cells (Fig.  4). The cell-seeding algorithm 
of our system was assigned a random number. Thus, the 
simulated initial cell location was more dispersed than 
the experimental HOS cell initial location. We then simu-
lated the proliferation of HOS cells using the experimen-
tally obtained cell image from day 1, and repeated the cell 

simulation with cell–cell adhesion a as variable and weak 
cell–cell contact inhibition. With low cell–cell adhesion 
(a  =  10), the simulated growth curve correlated with 
the experimental growth curve of HOS cells (Fig.  12). 
Furthermore, the simulated cell image showed large cell 
colony forming proliferation (Fig. 12). Therefore, the cells 
that attached to the substrate with small cell aggregation 
were well simulated using the experimentally obtained 
initial cell image.

A summary of the simulated parameters for each cell 
type is shown in Table 1. From our simulation, we iden-
tified three modes of cell proliferation behavior based 
on the four cell types analyzed. The first mode includes 

Fig. 7  Cell proliferation simulation with varying cell doubling time. The upper graph shows the growth curves and the lower images are proliferat‑
ing cell images for each condition. The doubling time td [h] ranged from 18 to 48. Other parameters were constant values: s0, 1000; a, 20; mot, 4; Pci, 
weak
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cancerous HOS and HeLa cells, which exhibit low cell–
cell adhesion and weak cell–cell contact inhibition. The 
second was observed in MSCs, which exhibit high cell–
cell adhesion and positive cell–cell contact inhibition. 
The third was observed in A7r5 cells, which exhibit low 
cell–cell adhesion and strong cell–cell contact inhibition. 
The cancer cells demonstrated exponential proliferation 

and reached more than 95% confluence (Fig.  4). Gener-
ally, cancer cells can grow without any positive cell–cell 
adhesion or cell–cell contact inhibition, and they can eas-
ily attain an over-confluent cell pattern. Therefore, our 
simulated results reasonably describe these cells. The 
MSCs demonstrated a fine mottled proliferation pattern 
(Fig.  4), which requires high cell–cell adhesion values 

Fig. 8  Cell proliferation simulation with varied cell motility. The upper graph shows the growth curves and the lower images are proliferating cell 
images for each condition. The motility mot (h) ranged from 1 to 8. Other parameters were constant values: s0, 1000; td, 24; a, 20; Pci, weak
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to be produced by the simulation (Fig. 9). Mesenchymal 
cells exhibit cell–cell contact inhibition and intercellular 
adhesive force is reported to be high [16]. Therefore, we 
concluded that the selected value of the cell–cell adhe-
sion of MSCs was reasonable. A7r5 cells showed a very 
sparse confluence pattern (Fig. 4). These sparse patterns 
require strong cell–cell contact inhibition. On the other 
hand, simulated A7r5 cells did not demonstrate high 

cell–cell adhesion. This is likely because the growth curve 
of A7r5 cells was exponential and the proliferative cell 
pattern did not show a mottled pattern. Thus, we suppose 
that this is the interaction properties of A7r5 cells.

In this study, we simulated all cells with a constant 
motility (mot = 4.0). This is because the effect of motil-
ity was limited in the simulated growth curve (Fig. 8). It 
is difficult to determine appropriate parameter values 

Fig. 9  Cell proliferation simulation with varied cell–cell adhesion. The upper graph shows the growth curves and the lower images are proliferating 
cell images for each condition. The cell–cell adhesion a (%) ranged from 5 to 40. Other parameters were constant values: s0, 1000; td, 24; mot, 4; Pci, 
weak
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when the number of variables increases. Cell simulated 
results, in particular, can be quantitatively compared to 
experimentally obtained cell growth curves, but only 
qualitatively compared to experimentally obtained 
cell proliferation patterns. Therefore, it is necessary to 
reduce the number of variables. In this study, we treated 
only two parameters, cell–cell adhesion and cell–cell 
contact inhibition, as variables, and we succeeded 
with cell proliferation simulations (Figs.  11, 12). Future 

studies on the quantitative comparison of simulated cell 
images and experimentally obtained images are needed. 
However, it is difficult to evaluate the similarity of two 
different images. Here, we attempted 2D Fourier trans-
formation of cell images and compared the power spec-
trums of the resulting images, but we did not obtain 
quantitative values from the comparison. Therefore, 
another image comparison algorithm will be needed for 
this type of analysis.

Fig. 10  Cell proliferation simulation with varied cell–cell contact inhibition of proliferation. The upper graph shows the growth curves and the 
lower images are proliferating cell images for each condition. The cell–cell contact inhibition Pci ranged from null to strong. Other parameters were 
constant values: s0, 1000; td, 24; mot, 4; a, 20
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Conclusions
We developed a cellular automata simulator for deter-
mining the cell–cell interaction properties of cultured 
cells. Cultured cells proliferated with their character-
istic cell patterns and growth curves. We determined 
their doubling time from their growth curves, and 
then simulated their proliferation using their doubling 

times and initial cell numbers, with cell–cell interac-
tion properties as variables. The proliferation could be 
simulated and we could determine their cell–cell inter-
action properties. HOS and HeLa cancer cells exhibited 
low cell–cell adhesion and weak cell–cell contact inhi-
bition of proliferation. MSCs exhibited high cell–cell 
adhesion and positive cell–cell contact inhibition of 
proliferation. A7r5 cells exhibited low cell–cell adhe-
sion and strong cell–cell contact inhibition of prolifera-
tion. These cell–cell interaction properties, which are 
characteristic features of each cell, could not be deter-
mined from typical cell culture experiments. There-
fore, our developed simulation approach is an easy 
method for evaluating the cell–cell interaction proper-
ties of cells. Furthermore, this simulation can be used 
as a basic system for simulating many types of cellular 
events.

Fig. 11  Cell proliferation simulation for each cell type. The cell types are MSC (a), HOS (b), HeLa (c), and A7r5 (d). The simulated and experimentally 
obtained cell proliferation results are shown. The simulation growth curves are represented by lines and those from experimentally obtained results 
are shown as circles. The simulated cell images (Sim) and experimentally obtained images (Exp) are shown for day 3 (D3) and 7 (D7). The initial cell 
number s0 and doubling time td were used as determined in Fig. 4. The motility mot was used at a constant value of 4 (h). Cell–cell adhesion a and 
cell–cell contact inhibition Pci values used are indicated for each graph

Table 1  Parameters of each cell proliferation simulation

Parameter MSC HOS HeLa A7r5

s0 (cells) 1390 740 1450 1070

td (h) 27.7 19.7 24.2 40.3

a (%) 40 10 20 20

Pci Positive Weak Weak Strong
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Abbreviations
HOS: human osteosarcoma; MSC: mesenchymal stem cell; 2D: 2 dimensional; 
FBS: fetal bovine serum; GUI: graphical user interface.
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