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Abstract 

Importance  The prevalence of obesity among United States adults has increased from 30.5% in 1999 to 41.9% 
in 2020. However, despite the recognition of long-term weight gain as an important public health issue, there 
is a paucity of studies studying the long-term weight gain and building models for long-term projection.

Methods  A retrospective, cross-sectional cohort study using the publicly available National Health and Nutrition 
Examination Survey (NHANES 2017–2020) was conducted in patients who completed the weight questionnaire and had 
accurate data for both weight at time of survey and weight ten years ago. Multistate gradient boost modeling classifiers 
were used to generate covariate dependent transition matrices and Markov chains were utilized for multistate modeling.

Results  Of the 6146 patients that met the inclusion criteria, 3024 (49%) of patients were male and 3122 (51%) 
of patients were female. There were 2252 (37%) White patients, 1257 (20%) Hispanic patients, 1636 (37%) Black 
patients, and 739 (12%) Asian patients. The average BMI was 30.16 (SD = 7.15), the average weight was 83.67 kilos 
(SD = 22.04), and the average weight change was a 3.27 kg (SD = 14.97) increase in body weight (Fig. 1). A total of 2411 
(39%) patients lost weight, and 3735 (61%) patients gained weight (Table 1). We observed that 87 (1%) of patients 
were underweight (BMI < 18.5), 2058 (33%) were normal weight (18.5 ≤ BMI < 25), 1376 (22%) were overweight 
(25 ≤ BMI < 30) and 2625 (43%) were obese (BMI > 30).

From analysis of the transitions between normal/underweight, overweight, and obese, we observed 
that after 10 years, of the patients who were underweight, 65% stayed underweight, 32% became normal weight, 
2% became overweight, and 2% became obese. After 10 years, of the patients who were normal weight, 3% became 
underweight, 78% stayed normal weight, 17% became overweight, and 2% became obese. Of the patients who were 
overweight, 71% stayed overweight, 0% became underweight, 14% became normal weight, and 15% became obese. 
Of the patients who were obese, 84% stayed obese, 0% became underweight, 1% became normal weight, and 14% 
became overweight.

Conclusions  United States adults are at risk of transitioning from normal weight to becoming overweight or obese. 
Covariate dependent Markov chains constructed with gradient boost modeling can effectively generate long-term 
predictions.
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Introduction
The prevalence of obesity among United States adults 
has increased from 30.5% in 1999 to 41.9% in 2020 [1–6]. 
Thus, new methods for modeling this increase in obesity 
overtime is necessary to best combat this public health 
emergency [7–10]. Multiple studies have identified major 
risk factors for obesity, including demographic factors 
(race, sex, age), lifestyle factors (exercise, sleep), and clini-
cal comorbidities (hypertension, diabetes. Additionally, 
multiple studies have demonstrated the high prevalence of 
weight gain in the United States population and detailed 
the significant medical consequences of obesity related dis-
eases such as coronary artery disease and type II diabetes 
[11–17]. Comorbidities such as cardiometabolic health and 
increased modeling of long-term diseases are of great focus 
in the building of models for obesity to guide medical care 
and limit the negative impacts of the obesity epidemic [18–
21]. Despite the recognition of long-term weight gain as an 
important public health issue, there is a paucity of studies 
studying the long-term weight gain and building models 
for long-term projection [18, 20].

Markov chains are a very popular methodology to model 
change overtime, in which a transition probability is esti-
mated, and the chain is executed overtime to generate 
long-term predictions [22–26]. Additionally, machine-
learning techniques have been utilized to enhance predic-
tive accuracy beyond that of parametric methods such as 
logistic and linear regression [27, 28]. Furthermore, very 
few studies utilize multiple states as their outcome, often 
choosing to rely on binary outcomes (obesity, not obesity), 
losing significant information in the process [29]. Devel-
opment of a methodology to combine Markov chains, 
machine-learning techniques, and multi-state modeling 
will not only allow for accurate modeling of patient weight 
overtime, but also provide a new methodology that can be 
utilized to widely model any multi-state outcome, leading 
to broad scientific benefit [18, 20].

This study aims to provide a develop a methodology 
that utilizes multi-class machine learning classifiers with 
Markov chains to model obesity rates overtime in United 
States Adults within the National Health and Nutrition 
Examination Survey (NHANES) cohort [30–32].

Methods
A retrospective, cross-sectional cohort study using the 
publicly available National Health and Nutrition Exami-
nation Survey (NHANES 2017–2020) was conducted in 
patients who completed the weight questionnaire and 

had accurate data for both weight at time of survey and 
weight ten years ago. The full dataset can be found on the 
cdc website (https://​wwwn.​cdc.​gov/​nchs/​nhanes/​conti​
nuous​nhanes/​defau​lt.​aspx?​Cycle=​2017-​2020) and a full 
detailed description of the questionaaire can be found.

Ethics approval and consent to participate
The acquisition and analysis of the data within this study 
was approved by the National Center for Health Statistics 
Ethics Review Board.

Dataset and cohort selection
The National Health and Nutrition Examination Survey 
(NHANES) is a program designed by the National Center 
for Health Statistics (NCHS), which has been leveraged 
to assess the health and nutritional status of the United 
States population. The NHANES dataset is a series of 
cross-sectional, complex, multi-stage surveys conducted 
by the Centers for Disease Control and Prevention (CDC) 
on a nationally representative cohort of the United States 
population to provide health, nutritional, and physi-
cal activity data. In the present study, we analyzed adult 
(≥ 18 years old) patients in the NHANES dataset if they 
completed the weight questionnaire, leading to the inclu-
sion of 6146 total patients.

Assessment of long‑term weight change
From the questionnaire dataset in NHANES, the weight 
10  years prior to the study and the current weight of 
the patient were extracted. The difference between the 
patient’s weight and the weight 10  years ago was the 
metric used for Long-term Weight Change within this 
study. Weight categories defined by the Centers of Dis-
ease Control and Prevention (CDC) were utilized in this 
study: Patients who had a BMI less than 18.5 were con-
sidered underweight, patients with BMI between 18.5 
and 25 were considered of normal weight, patients with 
BMI between 25 and 30 were overweight, and patients 
with BMI above 30 were considered obese. These are in 
accordance to CDC categories and definitions did not 
vary by age ranges.

Model construction and statistical analysis
Overall weight change was summarized within a histo-
gram and the state transitions were summarized within 
in a transition-state figure. Additionally, patients were 

https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?Cycle=2017-2020
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?Cycle=2017-2020
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classified as underweight, normal weight, overweight, or 
obese at both the time of survey and ten years prior. A 
transition matrix was built based upon this cohort and 
Markov Chains were used to project which states (under-
weight, normal weight, overweight, or obese) the patient 
was likely to be in for the next 10 decades. Covariates 
were taken from NHANES dataset and focused upon 
race and sex. These projections were plotted visually in 
line-graphs. Confidence intervals for these estimates 
were obtained though bootstrap simulation of the tran-
sition matrices. Additionally, multistate gradient boost 
modeling classifiers were used to generate covariate 
dependent transition matrices and Markov chains were 
utilized for multistate modeling.

Gradient boost modeling methodology: Patients were 
split into four groups (underweight, normal weight, 

overweight and obese). A model was built for each of 
these groups, and the gradient boost modeling was uti-
lized to predict the probability that any patient in the 
group would transition to the other states.

Results
Of the 6146 patients that met the inclusion criteria, 3024 
(49%) of patients were male and 3122 (51%) of patients 
were female. There were 2252 (37%) White patients, 1257 
(20%) Hispanic patients, 1636 (37%) Black patients, and 
739 (12%) Asian patients (Table  1). The average BMI 
was 30.16 (SD = 7.15), the average weight was 83.67 kilos 
(SD = 22.04), and the average weight change was a 3.27 kg 
(SD = 14.97) increase in body weight (Fig.  1). A total of 
2411 (39%) patients lost weight, and 3735 (61%) patients 
gained weight. We observed that 87 (1%) of patients 

Table 1  Summary of patient characteristics, stratified by patients with weight loss vs no weight loss

All patients Lost weight Gained or 
maintained weight

P-value

Total patients (N) 6146 (1) 2411 (0.39) 3735 (0.61) N/A

Age; mean (SD) 58.39 (12.94) 62.01 (12.85) 56.05 (12.45) P < 0.001

Gender male; count (%) 3024 (0.49) 1376 (0.57) 1648 (0.44) P < 0.001

Gender female; count (%) 3122 (0.51) 1035 (0.43) 2087 (0.56)

Race white; count (%) 2252 (0.37) 943 (0.39) 1309 (0.35) P < 0.001

Race other; count (%) 262 (0.04) 113 (0.05) 149 (0.04)

Race hispanic; count (%) 1257 (0.2) 462 (0.19) 795 (0.21)

Race black; count (%) 1636 (0.27) 609 (0.25) 1027 (0.27)

Race asian; count (%) 739 (0.12) 284 (0.12) 455 (0.12)

Income_poverty_ratio; mean (sd) 2.7 (1.63) 2.59 (1.61) 2.77 (1.64) p = 0.53

BMXWT—weight (kg); mean (SD) 83.67 (22.04) 76.89 (18.94) 88.04 (22.79) P < 0.001

weight_change; mean (SD) 3.27 (14.97) − 9.71 (10.39) 11.64 (10.96) P < 0.001

BMXBMI—body mass index (kg/m**2); Mean (SD) 30.16 (7.15) 27.58 (5.96) 31.82 (7.36) P < 0.001

Direct HDL-cholesterol (mg/dL); Mean (SD) 53.99 (16.34) 56.22 (17.36) 52.56 (15.48) P < 0.001

LDL-cholesterol, friedewald (mg/dL); Mean (SD) 110.89 (37.05) 105.63 (36.74) 114.41 (36.84) P < 0.001

Cholesterol, refrigerated serum (mg/dL); Mean (SD) 189.64 (41.88) 184.65 (43.57) 192.86 (40.44) P < 0.001

Triglyceride (mg/dL); mean (SD) 114.94 (97.1) 105.21 (76.42) 121.43 (108.26) P < 0.001

Albumin, urine (mg/L); mean (SD) 60.16 (367.89) 82.35 (490.35) 45.95 (259.97) P < 0.001

Creatinine, urine (mg/dL); mean (SD) 121.99 (80.62) 116.61 (77.26) 125.44 (82.52) P < 0.001

Albumin creatinine ratio (mg/g); mean (SD) 61.17 (396.2) 83.55 (517.76) 46.85 (292.24) P < 0.001

Total cholesterol (mg/dL); mean (SD) 189.33 (41.85) 184.25 (43.52) 192.6 (40.41) P < 0.001

Platelet count (1000 cells/uL); mean (SD) 241.76 (65.7) 234.72 (67.21) 246.32 (64.3) P < 0.001

Insulin (pmol/L); mean (SD) 90.79 (150.55) 75.21 (129.96) 101.13 (161.99) P < 0.001

Iron frozen, serum (ug/dL); mean (SD) 85.5 (34.49) 86.85 (35.02) 84.62 (34.12) P < 0.001

Fasting glucose (mg/dL); mean (SD) 117.65 (40.76) 121.14 (46.42) 115.32 (36.34) P < 0.001

Albumin, refrigerated serum (g/dL); mean (SD) 4.03 (0.33) 4.04 (0.34) 4.02 (0.32) P < 0.001

Glucose, refrigerated serum (mg/dL); mean (SD) 106.12 (40.39) 110 (48.29) 103.61 (34.14) P < 0.001

Phosphorus (mg/dL); mean (SD) 3.55 (0.53) 3.58 (0.55) 3.52 (0.51) P < 0.001

Uric acid (mg/dL); mean (SD) 5.48 (1.48) 5.39 (1.49) 5.54 (1.48) P < 0.001

SMDANY—used any tobacco product last 5 days?; Mean (SD) 1249 (0.2) 565 (0.23) 684 (0.18) P < 0.001
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were underweight (BMI < 18.5), 2058 (33%) were normal 
weight (18.5 ≤ BMI < 25), 1376 (22%) were overweight 
(25 ≤ BMI < 30) and 2625 (43%) were obese (BMI > 30).

From analysis of the transitions between normal/
underweight, overweight, and obese, we observed that 
after 10  years, of the patients who were underweight, 
65% stayed underweight, 32% became normal weight, 
2% became overweight, and 2% became obese (Figs.  2, 
3). Full 10-year transition trajectories present in Fig.  2. 
After 10 years, of the patients who were normal weight, 
3% became underweight, 78% stayed normal weight, 
17% became overweight, and 2% became obese. Of the 
patients who were overweight, 71% stayed overweight, 
0% became underweight, 14% became normal weight, 
and 15% became obese. Of the patients who were obese, 
84% stayed obese, 0% became underweight, 1% became 
normal weight, and 14% became overweight (Fig. 2).

Subgroup analyses allow for visualization of potential 
covariates. Use of Gradient boost modeling shows statis-
tically identical distributions for the Markov projection 
overtime, thus validating this methodology. Further-
more, gradient boost modeling was able to be used for 
continuous covariates, an example was computed with 
a three covariate model: age, race, and gender. An exam-
ple for Age = 35, Race = Black, and Gender = Female was 

computed, and an example for age = 65, Race = Asian, 
and Gender = Male was computed to demonstrate the 
utility of the covariate dependent Markov chain in mod-
eling change overtime.

Discussion
In this retrospective, cross sectional cohort of United 
States adults, we observed that patients on average 
gained 3.27  kg over the 10  year period. As a result of 
this age-related weight gain, we observed that a large 
number of patients who were normal weight transition-
ing to become overweight or obese within a decade. On 
subgroup analysis, we found that female patients were 
more likely to gain weight than male patients (Fig.  4). 
Furthermore, we found that compared wo white patients, 
Black and Hispanic patients were more likely to gain 
weight and Asian patients were less likely to gain weight 
(Fig. 4). These observed differences highlights that there 
may be additional demographic, lifestyle, and biological 
risk factors for obesity that should be analyzed. Many of 
these risk factors have been examined in the literature, 
including increased intake of sugar, decreased exercise, 
increased sedentary activity, and decreased sleep [11, 13, 
14, 16, 33].

Fig. 1  Histogram of 10-year weight change
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Recognizing that there are numerous clinical and 
demographic covariates that may help model weight 
change overtime, a clear methodology that is able 
to help model weight change over time accurately is 
needed [3, 12]. Our methodology combines multistate 
modeling with Markov chains with machine-learning 
techniques. Multistate modeling allows us to model 
obesity as a set of four outcomes: underweight, normal 
weight, overweight, and obese. Other methods used 
to model obesity use logistic regression, in which the 
model is limited to a binary outcome, often obesity vs 
no obesity. By utilizing multistate modeling, a more 
accurate depiction of a patient’s weight can be done, 
and no loss of information is present. Furthermore, 
using multistate modeling through Markov chains 
allows for extrapolation into the future. Another inno-
vation is the combination of machine learning with 
Markov chains for multistate modeling. Most methods 
that use machine learning to model outcomes often 
model binary outcomes (obesity vs no obesity). How-
ever, we were able to utilize multi-class classification 

Fig. 2  Transitions between obese, overweight, normal weight, and underweight. Each circle represents a specific weight category, and arrows 
represent the proportion of one group transitioning to another group over the 10-year period

Fig. 3  Markov model of weight overtime—each new dot represents 
a decade. X-axis years in units of 10 years. Y-axis is the prevalence 
of each weight category. Time prior to zero is modeling backwards 
for increased context for long-term projection
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instead of binary classifiers and be able to have the 
machine learning have output of underweight, normal 
weight, overweight, and obese instead of traditional 
binary outcomes of obese vs not obese. By being able 
to combine the multi-class classification of machine 
learning models, (in our case gradient boost modeling) 
combined with Markov chains, we are able to have the 
utility for long-term projection Markov chains offer as 

well as the predictive accuracy that machine learning 
algorithms are able to offer (Fig. 5).

What our study contributes to the literature is a novel 
method for modeling obesity trends over time. We are 
able to effectively combine two well validated techniques 
for predictive modeling: Markov chains and supervised 
machine learning (gradient boost modeling). Addition-
ally, the novel use of bootstrap simulations allowed for 

Fig. 4  Sex and weight differences in weight overtime—each new dot represents a decade. X-axis years in units of 10 years. Y-axis is the prevalence 
of each weight category

Fig. 5  Modeling of two particular patients based upon race, sex, and age—each new dot represents a decade. X-axis years in units of 10 years. 
Y-axis is the prevalence of each weight category
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accurate quantification of the uncertainty of each of 
these observations that were constructed by the Markov 
chains [34–36]. This novel method of applying covariate-
dependent transition states within Markov chains has 
utility beyond obesity metrics. Any multistate outcome 
of interest can be modeled, and the transition states 
being dependent on any characteristics of the patient can 
be completed using this methodology. Furthermore, we 
were able to validate the reliability of this methodology 
by comparing univariable models with subgroups. The 
near identical match of the predictions from our algo-
rithm and the subgroups gives confidence that this meth-
odology is able to generate unbiased estimations.

Limitations
This study has several strengths and weaknesses. We 
utilized the NHANES dataset, which is a retrospective 
cohort, carrying the limitations of retrospective stud-
ies. However, this study allows for the selection of a large 
cohort, evaluation of data quality, and due to the pub-
licly available nature of the cohort, allows for increased 
replication and follow-up studies based upon the same 
cohort. Furthermore, the cohort relied on surveys to 
obtain the outcome of interest (weight 10  years ago) as 
well as the dietary and lifestyle information. More accu-
rate measurements may have been achieved with pro-
spective studies with lab measurements of weight, but 
these may interfere with natural patient habits since they 
know they are part of a nutrition study and may have sig-
nificantly different behaviors than the general population. 
Additionally, self-reported survey information allows 
for the volume of participants to be included within this 
study. Another weakness was the voluntary nature of this 
cohort, with participants choosing to opt into the study 
instead of being randomly selected. This may artificially 
select a different cohort that may significantly differ from 
the population. However, our analysis found a demo-
graphically diverse population, so these results may still 
be generalizable to other cohorts.

Conclusion
United States adults are at risk of transitioning from 
normal weight to becoming overweight or obese. Covar-
iate dependent Markov chains constructed with gradi-
ent boost modeling can effectively generate long-term 
predictions.
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