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Abstract 

Objectives  In this paper, a uniformly convergent numerical scheme is proposed for solving a singularly perturbed 
Fredholm integro-differential equation with an integral initial condition. The equation involves a left boundary layer 
which makes it difficult to solve it using the standard numerical methods. A fitted operator finite difference method 
is used to approximate the differential part of the equation and the composite Simpson 1

3
 rule is used for the integral 

parts of the equation and the initial condition.

Result  The stability bound and error estimation of the approximated solution are performed, to show the uniform 
convergence of the scheme with order one in the maximum norm. Numerical test examples are provided to calcu-
late the maximum absolute errors, thrgence, and the uniform error for a couple of examples to support theoretical 
analysis.
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Introduction
A wide range of mathematical models, from fluid dynam-
ics to mathematical biology, can be expressed in the form 
of singularly perturbed problems. Examples of such mod-
els include high Reynold number flow in fluid dynamics 
and heat transport problems [21, 24]. Singularly perturbed 
differential equations are a class of equations frequently 
encountered in applied mathematics, characterized by 

the presence of a small positive parameter ε multiplying 
some or all of the highest order derivative terms in the dif-
ferential equations [18, 20]. These equations give rise to 
solutions that exhibit multi-scale phenomena [24], where 
certain regions of the domain feature thin layers with sig-
nificant changes in scale in the solution and its derivatives. 
These layers are referred to as boundary or interior layers, 
depending on their location within the domain.

It is important to note that classical numerical meth-
ods for solving singularly perturbed problems (SPPs) are 
generally unsuitable for small values of the perturbation 
parameter ε , as they often lead to instability and inaccurate 
results. As such, appropriate numerical methods must be 
employed to solve these problems accurately. Due to the 
widespread applicability of SPPs in many scientific and engi-
neering fields, research in this area continues to be of great 
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importance, with ongoing efforts aimed at developing bet-
ter numerical techniques for solving these types of equa-
tions. The accuracy and convergence of the methods have to 
be considered since the numerical treatment of SPPs is not 
easy and because the solution depends on the perturbation 
parameter ε and the mesh size [20, 27].

A singularly perturbed Fredholm integro-differential equa-
tion (SPFIDE) possesses a significant barrier for numerical 
analysis, which demands accurate numerical results. As a 
result, numerous works that concentrate on designing effec-
tive numerical techniques for handling the perturbation have 
been published. For the purpose of getting accurate numeri-
cal results, the literature is replete with material on the 
numerical handling of these issues. Durmaz et al. in [7–15] 
considered different forms of the singularly perturbed inte-
gro-differential equations. They used different approaches 
to approximate the differential parts of the equations and 
used the composite trapezoidal rule for the integral part of 
the equations. Amiraliyev et al. [2] presented an initial-value 
problem for a singularly perturbed Fredholm integro-differ-
ential equation. They derived explicit theoretical bounds for 
the continuous solution and its derivative. They established 
parameter uniform error estimates for the approximated 
solution.

Hamoud et  al. [16, 17] presented a variational iteration 
method for solving the Fredholm integro-differential equa-
tion. They provided an analytical approximation to deter-
mine the behavior of the solution. Moreover, proof of the 
existence and uniqueness results in the convergence of the 
solution. Kudu et al. [19] considered the singularly perturbed 
initial value problem for a first-order Volterra integro-dif-
ferential equation with delay. They construct and analyze a 
numerical method that satisfies a uniform convergence irre-
spective of the perturbation parameter on the layer-adapted 
mesh. The numerical solution was discretized using implicit 
difference rules for the differential part and composite quad-
rature rules for an integral part. Cakir et al. [5] constructed 
a finite difference scheme for a first-order singularly per-
turbed Volterra integro-differential equation (SPVIDE) on a 
Bakhvalov-Shishkin mesh. They used integral identities and 
dealt with the emerging integral terms with interpolating 
quadrature rules. In their work, they established the stability 
bound and the error estimates of the approximate solution. 
In authors in [6], established a ε-uniform numerical scheme 
to solve second-order singularly perturbed Volterra Fred-
holm integro-differential equation. They used a non-uniform 
mesh by using interpolating quadrature rules and the linear 
basis functions. Solomon et al. [4] applied the exact differ-
ence method for solving reaction-diffusion type SPFIDE and 
established the uniform convergence analysis of the scheme.

Amiraliyev et  al. [2] established parameter-uniform 
error estimates for the approximate solution of a SPFIDE. 
They derived theoretical bounds on the continuous 

solution and its derivative. A singularly perturbed sec-
ond-order Fredholm integro-differential equation with 
a discontinuous source term was examined by [23]. 
They used a fitted numerical method on a Shishkin 
mesh to solve the problem. The method was shown to 
be uniformly convergent concerning the singular per-
turbation parameter. A singularly perturbed Fredholm 
integro-differential equation was considered by [3]. For 
the solution of the problem, a fitted difference scheme 
was constructed on a Shishkin mesh. The method was 
based on the method of integral identities with the use 
of exponential basis functions and interpolating quadra-
ture rules with the weight and remainder terms in inte-
gral form. Amirali et  al. [1] proposed a fitted difference 
scheme for first-order singularly perturbed quasilinear 
Fredholm integro-differential equation with integral 
boundary conditions using exponential basis functions, 
quadrature interpolation rules and the method of integral 
identities.

In [22], the fitted mesh finite difference method is 
considered for solving singularly perturbed Fredholm 
integro-differential equation. The derivative part is 
approximated using the upwind scheme and the inte-
gral part was estimated by the iterative quadrature rule. 
In addition, Richardson extrapolation was used and 
second-order accuracy was achieved. In [18] a param-
eter-uniform numerical method for a parameterized 
singularly perturbed differential equation containing 
integral boundary condition was studied. A numerical 
algorithm based on an upwind finite difference operator 
and a piece-wise uniform mesh is constructed. A uniform 
error estimate for the numerical solution was established. 
In [25], the authors introduced a fourth-order scheme of 
exponential type for solving Volterra integro-differential 
equations with singular perturbation. They also conduct 
a stability analysis of the method and provide numerical 
results, along with comparisons to alternative schemes.

Differential equations with integral boundary con-
ditions will occur in many applications, for example, 
in heat conduction, thermo-elasticity, plasma physics, 
underground water flow, etc. [26]. Based on the litera-
ture review we made, it is evident that numerous numeri-
cal methods have been employed to solve first-order 
SPFIDEs and presented diverse findings and conclusions. 
Our objective in this paper is to develop an accurate 
and uniformly convergent numerical method for solving 
SPFIDE with integral initial conditions. To overcome the 
problem associated with classical numerical methods, we 
will develop the fitted operator finite difference method 
together with Simpson’s rule to solve the problem with-
out generating an oscillation or divergence. Furthermore, 
we establish the stability and convergence analysis of the 
scheme. Implementation of the scheme involves the use 
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computer program on Matlab software for numerical 
computation. To validate the obtained result, examples 
are considered and the results are presented using graphs 
and tables.

Notation 1.1  The norm �.�∞ which is defined as 
�g�∞ = max

x∈[0,1]
|g(x)| is the maximum/supremum norm, 

for a function g defined on the domain [0, 1], C is a posi-
tive constants which is independent of the perturbation 
parameter ε.

Statement of the problem
We considered a SPFIDE with integral initial condition of 
the form:

where � = (0, l] , (�̄ = � ∪ x = 0) , 0 < ε ≪ 1 , is the per-
turbation parameter. � and A are given constants differ-
ent from zero. We assumed that a(x) ≥ α > 0 , c(x) ≥ 0 , 
f(x) and K(x, s) are sufficiently smooth functions satisfy-
ing certain regularity conditions. Under this condition, 
the solution u(x) of (1) exhibits a left boundary layer at 
x = 0 for small value of ε . This means that the derivative 
of the solution becomes unbounded for small values of 
the perturbation parameter as x approaches to 0.

The following lemma establishes a prior estimate for 
the asymptotic behavior of the solution.

Lemma 2.1  [9, 10] Let a, f ∈ C(�) and K ∈ C(�×�) . 
Then, the solution of (1) holds:

where, C =
(

B+ α−1||f ||∞
)

e
�K̄ l

α ,B = u(0) =
∫

l

0
u(s)c(s)ds + A and 

K̄ = max |K (x, s)|. In addition, if 
∣

∣

∂
∂xK (x, s)

∣

∣ ≤ K̄1 < ∞ . 
Then, the solution satisfies,

where c is constant independent of ε.

The fitted operator difference scheme
In this section, the exponentially fitted operator finite 
difference methods together with composite Simpson’s 13 
rule is applied to discretize the first-order SPFIDEs. On 
the domain [0, l], we introduce the equidistant meshes by 

(1)

Lεu := εu′(x)+ a(x)u(x)

+ �

∫

l

0

K (x, s)u(s)ds = f (x), x ∈ �,

u(0) =

∫

l

0

c(s)u(s)ds + A,

(2)�u||∞ ≤ C ,

(3)|u(t)(x)| ≤ c

(

1+
1

εt
e−

αx
ε

)

, x ∈ �̄, t = 0, 1, 2,

dividing the domain using uniform mesh h = xi − xi−1 
such that 0 = x0 < x1 < x2 < ... < xN = l and where N 
is the discretization parameter. Using the Taylor series 
expansion for u about the point xi , written as,

Using (4) and (5), we obtain the following finite different 
operator,

For the equation

the fitting factor for the finite difference approximation of 
the equation can be computed as

where σ is the introduced fitting factor. Let us denote ρ
=h
ε
 , then by evaluating the limit of (8) as h → 0,

The asymptotic solution of (8), has the form

where u0(x) is the solution of the equation αu0(x) = 0 
and w(x) is the inner layer solution. Using (8) into (10), 
we have,

which gives w(x) = Ce−
αx
ε . Hence, solution 

of (10), re-written as, u(x) = u0(x)+ Ce−
αx
ε . 

But, from initial condition of (1) let, 
u(0) =

∫ l
0 c(s)u(s)ds + A = B,⇒ C = B− u0(0). There-

fore, the considered asymptotic solution is,

Clearly, the stated first order singularly perturbed initial 
value problem has left boundary layers and on the uni-
form discretization point xi = ih , we have,

(4)u(xi−1) ≈ ui−1 = ui − hu′i +
h2

2
u′′i + O(h3),

(5)u(xi+1) ≈ ui+1 = ui + hu′i +
h2

2
u′′i + O(h3).

(6)

D
−
ui =

ui − ui−1

h
+ O(h), D

+
ui =

ui+1 − ui

h
+ O(h),

D
0
ui =

ui+1 − ui−1

2h
+ O(h2).

(7)εu′(x)+ a(x)u(x) = 0,

(8)εσ

(

ui+1 − ui

h

)

+ αui = 0,

(9)σ = −

ρα lim
h→0

ui

lim
h→0

(ui+1 − ui)
.

(10)u(x) = u0(x)+ w(x),

εw′(x)+ αw(x) = 0,

u(x) = u0(x)+ (B− u0(0))e
− αx

ε .
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Using (11) into (9) and simplifying, the induced fitting 
parameter becomes,

By substituting the fitting factor (σ ) into the semi-dis-
crete scheme we obtain,

Now, the truncation error of scheme (12) is given by,

Using the Taylor’s series in (6) we have,

where R1 is the truncated terms of the differential part of 
the problems. Moreover, applying the composite Simp-
son 1/3 rule to the integral term in (12), we form the 
complete discrete scheme. The Simpson’s 1/3 rule for 
approximating the integral part is given as

Generally, the composite Simpson’s 1/3 rule requires 
an even number of sub-divisions. Let [0,  l] be sub-
divided into N even number of sub-divisions, 

(11)

lim
h→0

ui = u0(x)+ (B− u0(0))e
−αiρ ,

lim
h→0

ui+1 = u0(x)+ (B− u0(0))e
−α(i+1)ρ = u0(x)+ (B− u0(0))e

−αiρe−αρ ,

lim
h→0

ui−1 = u0(x)+ (B− u0(0))e
−α(i−1)ρ = u0(x)+ (B− u0(0))e

−αiρeαρ .















σ =
ρα

1− e−αρ
.

(12)
L
N
ε ui ≡

( α

1− e−αρ
+ ai

)

ui −
α

1− e−αρ
ui−1

+ �

∫

l

0

K (xi, si)u(si)ds = fi.

LNε (u(xi)− ui)

=

(

εu′(xi)+ a(xi)u(xi)+ �
∫ l

0
K (xi, si)u(si)

)

−

(

( α

1− e−αρ
+ ai

)

ui −
α

1− e−αρ
ui−1

+�
∫ l

0
K (xi, si)u(si)ds

)

=εu′(xi)−
α

1− e−αρ
ui +

α

1− e−αρ
ui−1.

(13)
εu′(xi)−

α

1− e−αρ
ui +

α

1− e−αρ

(

ui − hu
′
i +

h
2

2
u
′′
i (ξ)

)

= R1,

∫ s2

s0
K (xi, s)u(s)ds =

h
3
[K (xi, s0)u(s0)+ 4K (xi, s1)u(s1)

+K (xi, s2)]+
−1
90

h5Ki,0u
(iv)
0 (s).

0 = s0 < s1 < s2 < · · · < sN = l , then the integral over 
the whole interval is found by adding this integration 
which yields,

where, R2 = −1
90

h
5
[

Ki,0u
(iv)
0

(ξ)+ Ki,2u
(iv)
2

(ξ)+ · · · + Ki,N−2u
(iv)
N−2

(ξ)

]

= −l

180
h
4
u
(iv)(ξ), ξ ∈ [0, l]. where u(iv)(ξ) is the largest 

value of the N- quantities on the 4th derivatives. Clearly, 
from (12) and (14) we have the following exact relation 
for u(xi),

where

where R = R1 + R2 . Similar to the approaches for an 
integral part of the problem (14) the initial condition of 
(1) is discretized as,

In a similar manner, we obtain the errors in the remaining 
sub-interval becomes, R3 =

−1
180h

4
(

c4(ξ)u4(ξ)
)

. Based on 
(15) and (16) we propose the following difference scheme 
for approximating the problem (1)

(14)

∫ l

0
K (xi, s)u(s)ds

=
h
3



K (xi, s0)u(s0)+ 4
N/2
∑

j=1
K (xi, s2j−1)u(s2j−1)

+2
N/2−1
∑

j=1
K (xi, s2j)u(s2j)+ K (xi, sN )u(sN )



+ R2.

(15)

LNǫ ui : =

(

α

1− e−αρ
+ ai

)

ui −
α

1− e−αρ
ui−1

+ �h

N
∑

j=0

ηjKijuj + R = fi , 1 ≤ i ≤ N − 1,

ηj =







1
3 , for j = 0,N ,
4
3 , for j = 1, 3, 5, . . . ,N − 1,
2
3 , for j = 2, 4, 6, . . . ,N − 2,

(16)

u(0) =
h
3






c(x0)u(x0)+ 2

N
2 −1
∑

i=1
c(x2i)u(x2i)

+4

N
2

∑

i=1
c(x2i−1)u(x2i−1)+ c(xN )u(xN )






+ A+ R3.
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where

Lastly, from (17) the linear system of equations for 
u1,u2,u3, . . . ,uN−1 are generated. Therefore, the gener-
ated system of linear algebraic equations can be written 
in matrix form as,

where M and T are coefficient matrix, F is a given func-
tion and u is an unknown function that is to be deter-
mined. The entries of M, T and F are given as,

(17)

LNε ui :=
(

α

1− e−αρ
+ ai

)

ui −
α

1− e−αρ
ui−1

+ �h
N
∑

j=0
ηjKijuj = fi,

u(0) = h
N
∑

i=0
ηiciui + A,

ηj =







1
3 , for j = 0,N ,
4
3 , for j = 1, 3, 5, . . . ,N − 1,
2
3 , for j = 2, 4, 6, . . . ,N − 2.

(M + T )u = F ,

M =















m11 =
α

1−e−αρ + ai + hη1c1 + A,

m1i = hηiciui + A, for i = 2, 3, . . . ,N − 1,

mii =
α

1−e−αρ + α, for i = 1, . . . ,N ,

mii−1 =
−α

1−e−αρ , for i = 1, 2, . . . ,N − 1,

T =

�

4h�
3
Ki,2j−1, for j = 1, 2, . . . , N

2
,

2h�
3
Ki,2j , for j = 1, 2, . . . , N

2
− 1,

and

Stability and uniform convergence analysis
In this section, we need to show the discrete scheme in 
(17) satisfies the discrete maximum principle, uniform 
stability estimates, and uniform convergence.

Lemma 3.1  (Discrete maximum principle). Assume 
that �h

∑N
j=0 ηjKijyj ≤ α. Let the difference operator,

F =

{

f1 + α
1−e−αρ (hη0c0u0 + A)+ �h

(

η0K1,0 + ηNK1,N
)

,
fi − �h

(

η0Ki,0 + ηNKi,N
)

, for i = 2, 3, . . . ,N − 2.

LNε yi =
(

α

1− e−αρ
+ ai

)

yi −
α

1− e−αρ
yi−1

+ �h
N
∑

j=0
ηjKijyj , 1 ≤ i ≤ N ,

be given. Then, for all mesh function yi such that y0 ≥ 0 . 
Then LNε yi ≥ 0 , implies that yi ≥ 0, for all 0 ≤ i ≤ N .

Proof  Let m be such that ym = min0≤i≤N yi and sup-
pose that ym < 0 . It is clear that, m  = 0 , ym ≤ ym+1 and 
ym ≤ ym−1 . If σ =

αρ
1−e−αρ  and ρ = h

ε
 , it follows that,

which is contradiction with the assumption that it made 
above LNε yi ≥ 0 . It follows that ym > 0 and thus yi > 0 , 
∀i, 0 ≤ i ≤ N  . � �

The uniqueness of the solution is guaranteed by this 
discrete maximum principle. The existence follows eas-
ily since, as for linear problems, the existence of the 
solution is implied by its uniqueness [9]. The discrete 

LNε ym =

(

α

1− e−αρ
+ am

)

ym

−
α

1− e−αρ
ym−1 + �hηmKimym,

=

(

α

1− e−αρ
+ am + �hηmKim

)

ym −
α

1− e−αρ
ym−1 < 0, asα > 0,

maximum principle enables us to prove the following 
lemma which provides the boundedness of the solution.

Lemma 3.2  Let linear difference operator LNε yi be 
defined as,

then, the following inequality holds,

Proof  Consider the function ϕ± defined by, ϕ±

i = ‖LNε
y‖∞,�N ± yi . At initial condition, x = 0 we have,

LNε yi =
(

α

1− e−αρ
+ ai

)

yi −
α

1− e−αρ
yi−1

+ �h
N
∑

j=0
ηjKijyj , 1 ≤ i ≤ N ,

�y�∞ ≤ �LNε y�∞.

ϕ±
0 = �LNε y�∞,�N ± y0 = �f �∞,�N ± y0 ≥ 0.
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For x > 0 we have,

This implies ϕ±
i ≥ 0 , ∀xi ∈ [0, l] . Therefore, from 

Lemma 3.2 it follows that, |y(xi)| ≤ �LNε y�∞,�N , ∀xi ∈ �N , 
which completes the proof. � �

Theorem  3.1  If a, f ∈ C(�̄) , ∂
sK
∂xs ∈ C(�̄× �̄) , s = 0, 1 

and |�| < α

max1≤i≤N
∑N

j=0 hηj |Kij |
, then, the solution of (17) 

converges uniformly to the solution of (1). The error of the 
approximated solution of (1) satisfies the bound

Proof  Suppose the error of the approximate solution is 
given by zi := u(xi)− ui then from (17) we have,

Using the result in Lemma 3.2 we have

However we estimate the error R from (13) and (3)

ϕ±(xi) = ‖LNε y‖∞,�N ± y(xi) = ‖LNε y‖∞,�N ± y(xi) ≥ 0.

�u(xi)− ui�∞,�̄N
≤ Ch.

LNε zi =
(

α

1− e−αρ
+ ai

)

zi −
α

1− e−αρ
zi−1

+ �h
N
∑

j=0
ηjKijzj = R,

z0 = h
N
∑

i=0
ηicizi + u(0),

where R = R1 + R2 and 1 ≤ i ≤ N .

�z�∞,�̄N
≤ C�R�∞,�N .

|R| = |R1 + R2| =

∣

∣

∣

∣

εu′(xi)+ aiu(xi)−

(

α

1− e−αρ
+ ai

)

ui +
α

1− e−αρ

(

ui − hu′i +
h2

2
u′′i (ξ)

)

+
h4

24
u(iv)(ξ)

∣

∣

∣

∣

=

∣

∣

∣

∣

h

ρ
u′i −

α

1− e−αρ

(

hu′i +
h2

2
u′′i (ξ)

)

+
h4

24
u(iv)(ξ)

∣

∣

∣

∣

≤

∣

∣

∣

∣

(

1

ρ
−

α

1− e−αρ

)

hu′i

∣

∣

∣

∣

+

∣

∣

∣

∣

α

2(1− e−αρ)
h2u′′i

∣

∣

∣

∣

+

∣

∣

∣

∣

1

24
h4u(iv)(ξ)

∣

∣

∣

∣

.

Using the bounds of tth derivatives of the solution of the 
problem in (3) we have

We have that h4 ≤ h2 ≤ h and from the Taylor series 
approximation of 1− e−αρ = α h

ε
− α h2

ε2
+ ... , the esti-

mated error can be written as, R ≤ Ch, which gives

Hence, from the bound in (18) the proposed numerical 
solution is uniformly convergent to the analytical solu-
tion.� �

Numerical examples and discussions
To verify the feasibility of the established theoreti-
cal results in this paper, we consider the experiments 
of two specific examples using the proposed numerical 
scheme on the problem of the form given in (1). We use 
the double mesh principle to estimate the maximum 
absolute errors.

R ≤

∣

∣

∣

∣

(

1
ρ
−

α

1− e−αρ

)(

1+
1
ε
e
−αxi
ε

)∣

∣

∣

∣

h+

∣

∣

∣

∣

α

2(1− e−αρ)

(

1+
1
ε2

e
−αxi
ε

)∣

∣

∣

∣

h2 +
∣

∣

∣

∣

1
24

(

1+
1
ε4

e
−αxi
ε

)∣

∣

∣

∣

h4.

(18)�R�∞,�N ≤ Ch.
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Example 4.1  Consider the singularly perturbed prob-
lem from [9]

with the initial condition

Example 4.2  Consider the singularly perturbed prob-
lem from [9]

with the initial condition

Lu :=εu′(x)+ u(x)+
1
20

∫ 1

0
xu(s)ds

=−
ε

(1+ x)2
+

1
1+ x

+ xε(1− e−
x
ε )+ x ln(1+ x)

−
19
20

x
[

ε
(

1− e−
x
ε

)

+ ln(1+ x)
]

+
1
20

x
[

ε
(

e−
x
ε − e−

1
ε

)

+ ln
(

2
1+ x

)]

, 0 < x ≤ 1,

u(0) = −

∫ 1

0
su(s)ds + 4 + ε2

+ (2− ε(1+ ε))e−
1
ε − ln 2.

Lu := εuÃ¢â‚¬â„¢(x)+ 2u(x)+
1
10

∫ 1

0

e1−xsu(s)ds = 2x + 1, 0 < x ≤ 1,

u(0)+

∫ 1

0
sin

(πs

2

)

u(s)ds = −2.

Since the exact solution to both of the examples are 
unknown, we estimate the maximum absolute errors and 
calculate the solutions using the double-grid method, in 
which the solution obtained is compared with the solu-
tion calculated on a double-fine grid. We denote the 
maximum absolute errors using the formula

where uNi  is the computed solution on N number of mesh 
points and u2N2i  is the computed solution on 2N number 
of of mesh points. The rate of convergence is calculated 
by the formula

We computed the maximum absolute error and the rate 
of convergence for the given examples by varying the num-
ber of mesh N and the perturbation parameter ε . In Table 1 
and Table 3, the maximum absolute error and rate of con-
vergence of the proposed scheme is presented. The findings, 
indicates that as the perturbation parameter decreases, the 
developed scheme achieves a stable and bounded maximum 
absolute error. This suggests that, the maximum absolute 
error of the scheme remains unaffected by the perturba-
tion parameter ε , which indicates the uniform convergence. 
By examining the values of ε and N in both Example 4.1 and 
Example 4.2, we observe the uniform convergence and the 
rate of convergence steadily increase towards unity, con-
firming the assertion made in Theorem 3.1.

To observe the behaviour of the considered problem, we 
plot the numerical solution profiles for various small values 
of the perturbation parameter ε in Figure  1 and Figure  2. 
Furthermore, in Tables 2 and 4, we compare the maximum 

EN
ε = max

0≤i≤N
|uNi − u2N2i |,

RN = log2

(

EN
ε

E2N
ε

)

.
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Fig. 1  Numerical solution of Example 4.1 with boundary layer 
formation as ε = 2

−4
, 2

−5 and 2−6 goes small with the corresponding 
mesh number N = 128
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Fig. 2  Numerical solution of Example 4.2 with boundary layer 
formation as ε = 2

−5
, 2

−6 and 2−7 goes small with corresponding 
mesh number N = 128
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absolute error of the proposed scheme with that of the 
scheme in [9] for both of the considered examples. The 
tables demonstrate that the proposed scheme outperforms 
the result in [9] in terms of the maximum absolute error.

Conclusions
We have constructed a fitted operator finite differ-
ence scheme, together with the composite Simpson’s 
1
3 rule for the problem on a uniform mesh, to provide 
a numerical solution of the first-order singularly per-
turbed Fredholm integro differential equation with 
the boundary layer. We have shown that the method is 
uniformly first-order convergent concerning the per-
turbation parameter ε . As it can be seen in Table 1 and 

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
−3.2

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4
O(1/N)
ε=2−12

ε=2−16

ε=2−18

ε=2−20

(a)

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
−3.5

−3

−2.5

−2

−1.5
O(1/N)
ε=2−12

ε=2−16

ε=2−18

ε=2−20

(b)
Fig. 3  Log-Log plot of the maximum absolute error for different values of the perturbation parameter and mesh numbers: a Example 4.1 and b 
Example 4.2

Table 1  Maximum absolute error and rate of convergence of the proposed method for Example 4.1

ε ↓ N → 2
5

2
6 2

7
2
8

2
9

2
10

2
0 1.3116e–02 6.9097e–03 3.5442e–03 1.7946e–03 9.0298e–04 4.5291e–04

0.9246e+00 0.9631e+00 0.9817e+00 0.9908e+00 0.9954e+00

2
−4 1.3387e–02 7.4664e–03 3.9318e–03 2.0162e–03 1.0207e–03 5.1355e–04

0.8424e+00 0.9252e+00 0.9635e+00 0.9820e+00 0.9909e+00

2
−8 1.7334e–03 2.3379e–03 3.9174e–03 5.2115e–03 5.1020e–03 3.7144e–03

0.4316e+00 0.7446e+00 0.4118e+00 0.0306e+00 0.4590e+00

2
−12 1.9236e–03 9.0871e–04 3.9685e–04 7.3668e–04 2.1274e–03 4.4521e–03

1.0819e+00 1.1952e+00 0.8924e+00 1.5299e+00 1.0653e+00

2
−16 1.9236e–03 9.0871e–04 3.9685e–04 7.3668e–04 2.1274e–03 4.4521e–03

1.0819e+00 1.1952e+00 0.8924e+00 1.5299e+00 1.0653e+00

2
−18 1.9236e–03 9.0871e–04 3.9685e–04 7.3668e–04 2.1274e–03 4.4521e–03

1.0819e+00 1.1952e+00 0.8924e+00 1.5299e+00 1.0653e+00

2
−20 1.9236e–03 9.0871e–04 3.9685e–04 7.3668e–04 2.1274e–03 4.4521e–03

1.0819e+00 1.1952e+00 0.8924e+00 1.5299e+00 1.0653e+00

Table 2  Comparison of the maximum absolute error of the 
proposed scheme and the scheme in [9] of Example 4.1

ε ↓ N → 2
6 2

7
2
8

2
9

Proposed scheme

2
−4 7.4664e–03 3.9318e–03 2.0162e–03 1.0207e–03

2
−8 2.3379e–03 3.9174e–03 5.2115e–03 5.1020e–03

2
−10 9.0871e–04 3.9685e–04 7.3668e–04 2.1274e–03

Result in [9]

2
−4 4.358e–01 5.281e–01 6.133e–01 5.291e–01

2
−8 4.912e–01 4.830e–01 5.668e–01 6.435e–01

2
−10 7.700e–01 4.610e–01 5.701e–01 6.014e–01
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Table 3, and the Log-Log plot in Figure 3, the numerical 
results of the test problems also agree with the analy-
sis of the error estimates and with the order of conver-
gence and hence, it is confirmed that the convergence 
order of the scheme is O(N−1) where N is the number 
of mesh intervals. The influence of the perturbation 
parameter on solving the problem is shown in the fig-
ures. The effectiveness of the proposed scheme is veri-
fied by comparing the results with previous studies. 

The proposed method was found to provide more accu-
rate and stable numerical results. This study focused 
on the application of the fitted operator finite differ-
ence method in conjunction with Simpson’s 13 rule to 
solve linear first-order singularly perturbed Fredholm’s 
integro-differential equations on a uniform grid. The 
fitted finite difference method is very applicable to get 
stable numerical solutions to singularly perturbation 
problems. Therefore, we suggest that in future work, 
researchers could extend the fitted finite difference 
method with the corresponding quadrature rule to 
solve linear singularly perturbed problems with delay.
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Table 3  Maximum absolute error and rate of convergence of the proposed method for Example 4.2

ε ↓ N → 2
5

2
6 2

7
2
8

2
9

2
10

2
0 3.4992e–02 1.8983e–02 9.8939e–03 5.0518e–03 2.5526e–03 1.2831e–03

0.8823e+00 0.9400e+00 0.9697e+00 0.9848e+00 0.9923e+00

2
−4 1.3018e–01 1.3971e–01 1.0548e–01 6.6102e–02 3.7290e–02 2.9853e–03

0.1019e+00 0.4054e+00 0.6742e+00 0.8259e+00 0.9094e+00

2
−8 7.7364e–03 4.3025e–03 6.3198e–03 6.3217e–03 1.3572e–03 1.4234e–03

0.8455e+00 0.5547e+00 0.7891e+00 0.8023e+00 0.9821e+00

2
−12 7.7206e–03 3.8803e–03 1.9451e–03 9.7376e–04 4.8817e–04 2.7002e–04

0.9925e+00 0.9963e+00 0.9982e+00 0.9960e+00 0.9981e+00

2
−16 7.7206e–03 3.8803e–03 1.9451e–03 9.7376e–04 4.8718e–04 2.4367e–04

0.9925e+00 0.9963e+00 0.9982e+00 0.9991e+00 0.9995e+00

2
−18 7.7206e–03 3.8803e–03 1.9451e–03 9.7376e–04 4.8718e–04 2.4367e–04

0.9992e+00 0.9963e+00 0.9982e+00 0.9991e+00 0.9995e+00

2
−20 7.7206e–03 3.8803e–03 1.9451e–03 9.7376e–04 4.8718e–04 2.4367e–04

0.9992e+00 0.9963e+00 0.9982e+00 0.9991e+00 0.9995e+00

Table 4  Comparison of the maximum absolute error of the 
proposed scheme and the scheme in [9] of Example 4.2

ε ↓ N → 2
6 2

7
2
8

2
9

2
10

Proposed scheme

2
−4 1.8983e−02 1.0548e−02 6.6102e–

02
3.7290e–
02

2.9853e–
03

2
−8 4.3025e−03 6.3198e−03 6.3217e–

03
1.3572e–
03

1.4234e–
03

2
−12 3.8803e−03 1.9451e−03 9.7376e–

04
4.8718e–
04

2.4367e–
04

2
−16 3.8803e−03 1.9451e–03 9.7376e–

04
4.8718e–
04

2.4367e–
04

Result in [9]

2
−4 5.558e–02 1.687e−02 4.810e–

02
1.270e–
03

3.200e–04

2
−8 5.610e–02 1.703e–02 4.960e–

03
1.320e–
03

3.400e–04

2
−12 5.544e–02 1.683e–02 4.970e–

03
1.350e–
03

3.500e–04

2
−16 5.680e–02 1.736e–02 5.160e–

03
1.420e–
03

3.700e–04
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