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Abstract

Campana, Trujillo, Peru

Objectives The Peruvian Andean region is an important center for plant domestication. However, to date, there have
been few genetic studies on native grain, which limits our understanding of their genetic diversity and the develop-
ment of new genetic studies for their breeding. Herein, we revealed the plastid genome of Chenopodium petiolare

to expand our knowledge of its molecular markers, evolutionary studies, and conservation genetics.

Data description Total genomic DNA was extracted from fresh leaves (voucher: USM < PER >:MHN333570). The
DNA was sequenced using lllumina Novaseqg 6000 (Macrogen Inc., Seoul, Republic of Korea) and reads 152,064 bp
in length, with a large single-copy region of 83,520 bp and small single-copy region of 18,108 bp were obtained.
These reads were separated by a pair of inverted repeat regions (IR) of 25,218 bp, and the overall guanine and cyto-
sine (GC) was 37.24%. The plastid genome contains 130 genes (111 genes were unique and 19 genes were found
duplicated in each IR region), including 86 protein-coding genes, 36 transfer RNA-coding genes, eight ribosomal
RNA-coding genes, and 25 genes with introns (21 genes with one intron and four genes with two introns). The phy-
logenetic tree reconstructed based on single-copy orthologous genes and maximum likelihood analysis indicated
that Chenopodium petiolare is most closely related to Chenopodium quinoa.
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Objective

Chenopodium petiolare Kunth is a native grain of the
Andean region, this annual herb grows in the Peruvian
Andean formations at altitudes of 200-3,900 m.a.s.l., and
its grains are small and black with high concentration
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of saponins [1, 2]. It is a diploid species with a small
number of chromosomes (2n=2x=18) belonging to
the Chenopodiaceae family. Its outstanding features are
drought stress tolerance and resistance to diseases [1,
3]. Chenopodium petiolare has multiple uses including
being used as cattle feed, in cooking local dishes such
as quispifio (dark muffin), and in traditional medicine
mainly for bone fractures [1].

The plastid genome has a quadripartite structure: a
large single-copy (LSC) of 80-90kilobase pairs (kb), a
small single-copy (SSC) of 16-27 kb, and two sets of
inverted repeats (IRs) of 20-28 kb, with 110-130 unique
genes, including protein-coding genes, transfer RNA
(tRNA), and ribosomal RNA (rRNA) [4, 5]. In recent
years, declining genome sequencing costs resulted in
more than 790 complete plant genomes of different
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Fig. 1 Circular map of Chenopodium petiolare chloroplast genome. The thick lines indicate the IR1 and IR2 regions, which separate the large
single-copy (LSC) and small single-copy (SSC) regions. Genes marked inside the circle are transcribed clockwise, and genes marked

outside the circle are transcribed counterclockwise. Genes are color-coded based on their function, shown at the bottom left. The inner circle
indicates the inverted boundaries and guanine and cytosine (GC) content

species becoming available [6, 7]. Recently, some Cheno-  grains of great importance for plant breeding programs.
podium plastid genomes such as Chenopodium acumina-  In the present study, we report the first plastid genome
tum (8], Chenopodium album (9], Chenopodium quinoa  sequence submitted for an isolate of Chenopodium peti-
[10], Chenopodium ficifolium [11], became publicly avail-  olare, which will expand our knowledge about its plant
able. However, despite the few genetic data available, we  molecular breeding, molecular markers, evolutionary
have only begun to investigate the genomics of native studies, and conservation genetics.
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Fig. 2 Phylogenetic tree of 24 plastid genomes. Maximum likelihood analysis based on single-copy orthologous protein. Bootstrap values
on the branches were calculated from 1000 replicates

Table 1 Overview of data files/data sets

Label Name of data file/data set File types (file extension) Data repository and identifier (DOI or accession
number)
Datafile 1 Herbarium specimen voucher of Chenopodium Picture file (jpg) Figshare https://doi.org/10.6084/m9.figshare.23574
petiolare Kunth (USM < PER >:333,570) 303.v1 [25]
Datafile2  Figure 1 Circular map of Chenopodium petiolare plastid  Picture file (jpg) Figshare https://doi.org/10.6084/m9.figshare.23574
genome 270.v1 [26]
Datafile 3 Plastid genome features of the Chenopodium petiolare  Document file (.docx) Figshare https://doi.org/10.6084/m9.figshare.23574
306.v1 [27]
Datafile4 — Genes present in the plastid genome of Chenopodium  Document file (.docx) Figshare https://doi.org/10.6084/m9.figshare.23574
petiolare 312.v1 [28]
Datafile5  Figure 2 Phylogenetic tree of 24 plastid genomes Picture file (jpg) Figshare https://doi.org/10.6084/m9.figshare.23574
32731 [29]
Dataset1  Chenopodium petiolare chloroplast, complete genome  Fasta file (fasta) GenBank from NCBI repository under the accession

number OQ957163
(https://identifiers.org/ncbi/insdc:0Q957163) [30]
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Data description

Total genomic DNA was extracted from approxi-
mately 100 mg of fresh leaves (from voucher number
USM < PER >:MHN333570) (Data file 1) using a cetyl-
trimethyl ammonium bromide (CTAB) protocol [12].
Genomic DNA quality was assessed using a fluorometry-
based Qubit (Thermo Fisher Scientific, USA) coupled to
a Broad Range Assay kit (Thermo Fisher Scientific, USA).
High-quality DNA (230/260 and 260/280 ratios > 1.8) was
normalized (20 ng/pL) to examine its integrity using 1%
(w/v) agarose gel electrophoresis. Qualified DNA was
fragmented, and the TruSeq Nano DNA kit (Illumina,
San Diego, CA, USA) was used to construct an Illu-
mina paired-end (PE) library. PE sequencing (2% 150 bp)
was performed using the Illumina NovaSeq 6000 plat-
form (Macrogen, Inc., Seoul, Republic of Korea) [13].
All adapters and low-quality reads were removed using
the FastQC [14] and Cutadapt [15] programs. PE reads
(2% 150 bp) were evaluated for quality using QUAST [16]
analysis, and subsequent steps used clean data. Then,
clean reads obtained were assembled into a circular con-
tig using NOVOPlasty (version.4.3) [17], with C. quinoa
(NC_034949) as the reference. Data can be accessed from
NCBI GenBank under the accession number OQ957163
[30]. The plastid genome was annotated using the Dual
Organellar GenoMe Annotator GeSeq [18] and CpGA-
VAS2 [19]. A circular genome map was constructed
using OGDRAW (version 1.3.1) [20] (Fig. 1). The plastid
genome encoded 130 genes, of which 111 were unique,
and 19 were duplicated in the inverted repeat (IR) region.
The chloroplast genome contained 86 protein-coding
genes, 36 tRNA-coding genes, eight rRNA-coding genes,
and 25 genes with introns (21 genes with one intron and
four genes with two introns), as shown in Data file 3.

The plastome contained 111 unique genes, of which
there were 28 tRNA genes, four rRNA genes, and 79
protein-coding genes. The latter comprised 21 ribosomal
subunit genes (nine large subunits and 12 small subunit),
four DNA-directed RNA polymerase genes, 45 genes
were involved in photosynthesis (11 encoded subunits
of the NADH oxidoreductase, seven for photosystem I,
14 for photosystem II, six for the cytochrome b6/f com-
plex, six for different subunits of ATP synthase, and one
for the large chain of ribulose biphosphate carboxylase),
eight genes were involved in different functions, and one
gene was of unknown function (Data file 4). Phylogenetic
analysis reconstruction was performed using 24 com-
plete chloroplast genome sequences to infer the phylo-
genetic relationships among Chenopodium species, and
Ficus virens was used as an outgroup (Fig. 2). Single-copy
orthologous genes were identified using the Orthofinder
pipeline (version 2.2.6) [21]. For each gene family, the
nucleotide sequences were aligned using the L-INS-i
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algorithm in MAFFT (version 7.453) [22]. A phyloge-
netic tree based on maximum likelihood (ML) was con-
structed using RAXxML (version 8.2.12) [23] with the GTR
CAT model. A phylogenetic ML tree was reconstructed
and edited using MEGA (version 11) [24] with 1000 rep-
licates. The phylogenetic tree illustrated that Chenopo-
dium petiolare is closely related to Chenopodium quinoa
[10].

Limitations

This study used leaf samples of Chenopodium petiolare
from the Lomas del Cerro Campana Private Conservation
Area in Trujillo, Peru. Administratively, this process takes
longer than necessary to obtain the corresponding access
permit for plant sample collection.

Abbreviations
LSC Large single-copy
SSC Small single-copy

IR Inverted repeat
tRNA  Transfer RNA
rRNA  Ribosomal RNA
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