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Abstract 

Background The choice of an appropriate similarity measure plays a pivotal role in the effectiveness of cluster-
ing algorithms. However, many conventional measures rely solely on feature values to evaluate the similarity 
between objects to be clustered. Furthermore, the assumption of feature independence, while valid in certain sce-
narios, does not hold true for all real-world problems. Hence, considering alternative similarity measures that account 
for inter-dependencies among features can enhance the effectiveness of clustering in various applications.

Methods In this paper, we present the Inv measure, a novel similarity measure founded on the concept of inversion. 
The Inv measure considers the significance of features, the values of all object features, and the feature values of other 
objects, leading to a comprehensive and precise evaluation of similarity. To assess the performance of our proposed 
clustering approach that incorporates the Inv measure, we evaluate it on simulated data using the adjusted Rand 
index.

Results The simulation results strongly indicate that inversion-based clustering outperforms other methods in sce-
narios where clusters are complex, i.e., apparently highly overlapped. This showcases the practicality and effectiveness 
of the proposed approach, making it a valuable choice for applications that involve complex clusters across various 
domains.

Conclusions The inversion-based clustering approach may hold significant value in the healthcare industry, offer-
ing possible benefits in tasks like hospital ranking, treatment improvement, and high-risk patient identification. In 
social media analysis, it may prove valuable for trend detection, sentiment analysis, and user profiling. E-commerce 
may be able to utilize the approach for product recommendation and customer segmentation. The manufacturing 
sector may benefit from improved quality control, process optimization, and predictive maintenance. Additionally, 
the approach may be applied to traffic management and fleet optimization in the transportation domain. Its versa-
tility and effectiveness make it a promising solution for diverse fields, providing valuable insights and optimization 
opportunities for complex and dynamic data analysis tasks.
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Introduction
Clustering is a fundamental technique in data mining and 
machine learning, aiming to group objects into distinct 
clusters [1–7]. Objects within a cluster show high simi-
larity to each other and low similarity to objects in other 
clusters, determined by a similarity measure [8–11].

Selecting an appropriate similarity measure is crucial 
for clustering algorithms. Studies indicate its signifi-
cance in algorithm performance [8–12]. Various research 
assesses similarity measures across disciplines like web 
clustering [13], trajectory clustering [14], and chemical 
databases [15]. Some research endeavors have further 
examined performance variations based on the type of 
data being analyzed, differentiating between categorical 
data [16] and continuous data [8]. Consequently, some 
scholars [17] have advocated for the utilization of two 
fundamental clustering techniques: "similarity measures" 
for qualitative data and "distance measures" for quanti-
tative data [17]. In this study, we’ll refer to both types of 
measures as "similarity measures."

Table  1 lists similarity functions for qualitative data, 
and Table  2 shows distance functions for quantitative 
data.

A key limitation of similarity measures (e.g., Euclidean 
distance [17] and Hamming similarity [18]) is their exclu-
sive reliance on feature values. Consequently, when two 
objects or entities exhibit similar feature values, they are 
considered more similar, regardless of any other perti-
nent factors. This oversimplification may overlook crucial 
aspects of the data.

Secondly, similarity measures often assume feature 
independence, neglecting their interdependence and 
potential influence on each other’s values. This oversight 
may result in incomplete representations of data relation-
ships. Moreover, most measures overlook feature prior-
itization, disregarding the varying importance of features 
in determining similarity. These assumptions do not fully 
align with real-world complexities, potentially limiting 
applicability and accuracy. To address these challenges, 
researchers explore inversion as a promising approach, 
investigating its theoretical and practical aspects [19–22].

Table 1 Some similarity functions for qualitative data [17]

Name Function formula or measure method Explanation

Jacard similarity J(A, B) = |A∩B|
|AUB|

1. Measures the similarity of two sets
2. |X |isthenumberofelementsofsetX
3. Jacard distance = 1 – Jacard similarity

Hamming similarity The minimum number of substitutions needed to change one 
data point into the other

1. Smaller numbers indicate greater 
similarity
2. Hamming distance is the opposite 
of Hamming similarity

For data of mixed type Map the feature into (0,1)
Transform the feature into a dichotomous one
Sij = 1

d

∑d
l=1 Sijl

Sij =
(

∑d
l=1γijl Sijl

)

/

(

∑d
l=1γijl

)

Table 2 Some distance functions for quantitative data [17]

Approach Formula Explanation

Minkowski distance (

∑d
l=1

∣

∣xil − xjl
∣

∣

n
)1/n A set of definitions for distance

1. City-block when n = 1
2. Euclidean distance when n = 2
3. Chebyshev distance when n → ∞

Standardized Euclidean distance (

∑d
l=1

∣

∣

∣

xil−xjl
sl

∣

∣

∣

2
)1/2 1. s stands for the standard deviation

2. A weighted Euclidean distance on the deviation

Cosine distance 1− cosα = Cov(xi .xj)√
D(xi )

√
D(xj )

1. Cov stands for the covariance and D stands for the variance
2. Measures the distance based on linear correlation

Pearson correlation distance 1− Cov(xi .xj)√
D(xi)

√
D(xj )

1. Cov stands for the covariance and D stands for the variance
2. Measures the distance based on linear correlation

Mahalanobis distance
√

(xi − xj)
T S−1(xi − xj)

1. S is the covariance matrix inside the cluster
2. Has high computational complexity
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In one study [19], a new constructive bijection con-
nects permutations with a specific number of inversions 
to those with a particular major index, facilitating explo-
ration of mathematical connections. Another work [20] 
introduces a probability distribution on the group of per-
mutations of the set of integers, providing insights into 
inversion’s probabilistic aspects for permutation-based 
data analysis. Furthermore, [21] presents six bijections 
linking a specific type of polyominoes called deco poly-
ominoes with permutations, establishing connections 
between classical statistics and permutation-related 
analyses. Moreover, [22] proposes an efficient solution 
for counting interior edge crossings in bipartite graphs, 
relevant for layered graph drawing and data visualization 
enhancement.

This study introduces "Inv," an inversion-based similar-
ity measure addressing previous challenges. It forms the 
basis of a new clustering approach grouping objects by 
inversion-based similarity. The primary goal is to opti-
mize clustering by maximizing intra-cluster similarity 
and minimizing inter-cluster similarities. By incorporat-
ing this measure, we anticipate achieving more meaning-
ful clustering results that better reflect underlying data 
patterns and relationships.

Data and method
The flowchart of the activities undertaken to assess the 
new inversion-based clustering approach is presented in 
the Fig. 1.

Formulation of challenges related to similarity criteria
Several key terms used in simulation examples are 
defined below.

Object: Any entity that we intend to cluster is an object. 
Each object obji has n features and can be represented by 
a vector: obji = �fi1, fi2, . . . , fin�.

Feature space: Each feature has a valid range of values 
known as its feature space, represented by Sf  for feature 
f .

Universe: The set of all objects we want to clus-
ter is known as the universe, represented by 
U =

{

obj1, obj2, . . . , objk
}

.

Similarity Measure: A similarity measure is a measure 
that takes two objects as input and outputs a numeric 
value representing their similarity.

Clustering problem: A problem of partitioning k objects 
into m groups 〈C1,C2, . . . ,Cm〉 according to a specified 
similarity measure, so that the objects in each group 
are as similar as possible to each other and as different 
as possible from objects in other groups. These clusters 
adhere to two constraints [1–7]:

In the following paragraphs, the challenges stated in 
the introduction section are formulated using the defined 
terms.

Symmetry challenge
A drawback of distance-based measures is called the 
Symmetry challenge, where adding or subtracting a value 
to a feature has the same distance effect. Given that 
Euclidean distance is widely used in clustering algorithms 
[23], it is used as a representative of distance-based 

(1)
m
⋃

i=1

Ci = U

(2)Ci

i=1..m
⋂

j = 1..m
i �= j

Cj = ∅

Formulate the 
problems related to 
similarity criteria

Define the concept 
of inversion 

Introduce the Inv 
similarity measure 
based on inversion

Introduce a 
clustering 

approach based on 
the Inv measure

Generate synthetic 
data

Evaluate the 
proposed approach

Fig. 1 Flowchart of implementation and evaluation of the inversion-based clustering approach
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measures in the following practices. Practice 1 demon-
strates the weakness of similarity criteria when adding or 
subtracting a specific value to a feature.

Practice 1: Consider the following three objects:

where

The first feature of obj2 is v units less that the first fea-
ture of obj1 , and the first feature of obj3 is v units more 
than the first feature of obj1 . All other features are equal 
in the three objects. The Euclidean distance E between 
them, the similarity for adding v to the first feature is 
calculated as follows:

and the similarity for subtracting v from the first feature 
is calculated as follows:

This challenge can arise for any feature. In general, 
this challenge can be expressed as follows:

where

The equality of the distances is mathematically cor-
rect, but in the real world, the significance of adding 
a specific value to a feature may be different from that 

obj1 = �V1,V2, . . . ,Vn�

obj2 = �V1 + v,V2, . . . ,Vn�

obj3 = �V1 − v,V2, . . . ,Vn�

(3)V1,V1 + v,V1 − v ∈ Sf1

(4)
E
(

Obj
1
,Obj

2

)

= 2

√

(V1 − (V 1 + v))2 + (V2 − V2)
2 + · · · + (Vn − Vn)

2

= 2

√

(V1 − V1 − v)2 + (V2 − V2)
2 + · · · + (Vn − Vn)

2 = v

(5)
E
(

Obj
1
,Obj

3

)

= 2

√

(V1 − (V 1 − v))2 + (V2 − V2)
2 + · · · + (Vn − Vn)

2

= 2

√

(V1 − V1 + v)2 + (V2 − V2)
2 + · · · + (Vn − Vn)

2 = v

obj1 = �V1,V2, . . . ,Vi, . . . ,Vn�

obj2 = �V1,V2, . . . ,Vi + v, . . . ,Vn�

obj3 = �V1,V2, . . . ,Vi − v, . . . ,Vn�

E
(

obj1, obj2
)

= E
(

obj1, obj3
)

(6)
Vi,Vi + v,Vi − v ∈ Sfi

1 ≤ i ≤ n

of subtracting the same amount. An example based on 
student scores can be found as Supplementary Example 
1 (see Additional file 1).

Place symmetry challenge
The Place Symmetry challenge is a generalized form of 
the previous challenge. In this challenge, increasing or 
decreasing a value can occur for each feature. In Practice 
2, the weakness of the similarity criteria when adding or 
subtracting a certain value to possibly different features 
of objects is shown.

Practice 2: Consider the following three objects:

obj1 = �V1,V2, . . . ,Vn�

obj2 = �V1,V2, . . . ,Vi + v, . . . ,Vn�

obj3 = �V1,V2, . . . ,Vj − v, . . . ,Vn�

where

if Vi represents age and Vj represents weight, both nor-
malized to their respective feature spaces, adding v units 
to Vi and subtracting v units from Vj yields the same 
Euclidean distance between two pairs of objects. How-
ever, the implications of increasing or decreasing v units 
in weight differ from those in age due to varying value 
distributions. Hence, altering their values by v holds dis-
tinct meanings for each feature.

E
(

obj1, obj2
)

= E
(

obj1, obj3
)

(7)

Vi,Vi + v,Vi − v ∈ Sfi

Vj ,Vj − v ∈ Sfj

1 ≤ i, j ≤ n
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Feature independence challenge
The Feature Independence challenge refers to the treat-
ment of features as if they are independent of each other 
when calculating distance-based measures, whereas in 
practice they are often interdependent.

Definition of the concept of inversion
To address the challenges defined in section  "Formula-
tion of challenges related to similarity criteria", a similar-
ity measure named Inv, which is based on the concept of 
inversion, is proposed. The mathematical definition of 
inversion is as follows:

Inversion: In a sequence S = �a1, a2, . . . , an� of pairwise 
comparable elements ai(i = 1, 2, . . . , n) , a pair (ai, aj) is 
called an inversion if  i < j and ai > aj [22].

The concept of inversion is illustrated by Practice 3.
Practice 3: Suppose we have five movies and we ask 

two people to rate them on a scale of 1 to 10 according 
to their preferences. In this example, an object is a person 
and it is represented by a vector with 5 features [24].

Scores are given in Table 3. 
(8)

person = �Score(Movie1), Score(Movie2), Score(Movie3),

Score(Movie4), Score(Movie5)�

The definition of inversion for only one person is 
presented in Supplementary Example 1 (see Addi-
tional file  1). Let’s now explore a more indirect appli-
cation of the definition to determine the inversions 
between the scores of the two people. We arrange 
the movies for each person in a rank sequence based 
on preferences, with the highest-scoring movie first. 
Ties are resolved by ranking the movie with the 
lower movie number first. Person 1’s sequence is 
〈Movie1,Movie5,Movie2,Movie3,Movie4〉 , while Person 
2’s is 〈Movie1,Movie3,Movie4,Movie2,Movie5〉 . Renam-
ing the movies based on Person 1’s rank sequence, 
we get 〈1,2,3,4,5〉 for Person 1 and 〈1,4,5,3,2〉 for Per-
son 2. Applying the inversion definition to the second 
sequence, we find 4 is inverted compared to 3 and 2 
(two inversions), 5 is inverted compared to 3 and 2 (two 
inversions), and 3 is inverted compared to 2 (one inver-
sion), totaling five inversions.

A visual method for counting inversions involves 
organizing movies for each person by their scores, 
highest to lowest, and connecting corresponding mov-
ies. The intersections of these lines indicate the number 
of inversions between the two sequences.

In Fig. 2, the five inversions are indicated by the five 
points where the lines intersect. The more different the 
sequences, the greater the number of the inversions. 
The minimum and maximum number of inversions of 
two vectors with n features are 0 and n(n+1)

2  , respec-
tively [25]. Supplementary Code 1 contains the inver-
sion calculation algorithm (see Additional file 1).

Notice from Practice3 that the way ties are broken 
affects the number of inversions. The proposed way of 
resolving ties is to consider a default sequence for fea-
tures, and when the values of two or more features are 
the same, their order will be based on the default order. 
For instance, in the movies database, priority is given to 

Table 3 Users’ ratings of movies

Movies Score of person 1 Score of 
person 2

Movie1 10 9

Movie2 6 3

Movie3 5 9

Movie4 1 6

Movie5 8 1

Fig. 2 Each point of intersection between lines representing an inversion (practice 3)
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movies with smaller numbers. Thus, as Person 2 rated 
Movie 1 and Movie 3 equally at 9, Movie 1 takes prec-
edence in the rank order.

Practice3 illustrates the importance of feature prior-
itization in cases where values are equal. Depending on 
specific requirements, certain features may need to be 
prioritized over others, which can have a considerable 
impact on the resulting number of inversions.

Introduction of the Inv similarity measure based 
on the notion of inversion
In this subsection, the Inv inversion-based similarity 
measure is introduced. The Inv measure of the similar-
ity of two objects is defined as the number of inversions 
that exist between two objects according to the Count_
Inversions function. Formally, the measure is defined as 
follows:

According to the Inv measure, as inversion count 
between two sequences rises, their similarity decreases, 
and vice versa. Although we refer to inversion as a simi-
larity measure, it actually yields a measure of dissimilarity 
because the greater the similarity between two objects, 
the lower the number of inversions.

Three advantages of the inversion-based similarity 
measure are as follows [22]: the number of inversions is 
affected by the rank positions of the features in the vec-
tor (Feature Independence challenge); the number of 
inversions when v is added to feature fi can be different 
from the number of inversions when it is subtracted from 
fi (Symmetry challenge); and the number of inversions 
when v is added to fi may not be the same as the number 

obj1 = �V11,V12, . . . ,V1n�

obj2 = �V21,V22, . . . ,V2n�

(9)Inv(obj1, obj2) = Count_Inversions
(

obj1, obj2
)

of inversions when v is added to fj (Place Symmetry 
challenge).

The Symmetry challenge in distance-based measures 
results from the equal impact of adding or subtract-
ing a value from a feature on the distance. In calculating 
inversions, not only is the value of a particular feature 
considered, but also the values of other features become 
integral. The feature’s rank position within the object’s 
vector significantly affects the inversion count. Altering 
a feature’s rank position by adding a value may yield dif-
ferent outcomes compared to subtracting the same value, 
influenced by other features. Consequently, the inversion 
count varies depending on specific features, emphasizing 
the nuanced nature of inversion calculations.

The Place Symmetry challenge expands upon the Sym-
metry challenge by allowing the increase or decrease of a 
value for each feature individually. As previously noted, 
the count of inversions is influenced by both the value of 
a specific feature and other features, so it addresses this 
challenge as well as the previous challenge.

To challenge the independence of features, since deter-
mining the number of inversions requires determining 
the values and order of all features, hence the features 
cannot be independent of each other. The explanation of 
how the proposed measure addresses the outlined chal-
lenges are illustrated in Supplementary practice 1 (see 
Additional file 1).

The proposed similarity measure offers an additional 
advantage by allowing adjustments to consider feature 
importance in distance calculation. This enables the con-
sideration of feature relevance or priority, enhancing the 
measure’s utility. To accommodate priorities, the inver-
sion measure can be modified to incorporate both feature 
value and assigned priority. By default, all variables are 
assumed to have equal priority. Practice 4 demonstrates 
a method for factoring feature priority into similarity 
calculation.

Practice 4: Consider two objects, each with three fea-
tures, depicted by colored circles in Fig. 3. Let the orange 

Fig. 3 Prioritizing features: A All features have the same priority, which is one, B The priority of each feature is displayed within the corresponding 
circle (Practice 4)
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feature have priority 1 (lowest), the red feature priority 
2, and the blue feature priority 3 (highest). An adjusted 
inversion function is employed, where each inversion 
detected is weighted by the product of the relevant fea-
tures’ priorities.

According to Fig.  3A, there are 2 inversions because 
there are 2 points where the lines intersect (OB and RB). 
Since the priority of every feature is one, the adjusted 
inversion function is as calculated as:

To calculate the adjusted inversion for Fig.  3B, the 
products of the priorities of each inversion (represented 
by a line) are also considered.

Introduction of the clustering approach based on the Inv 
measure
In this section, we formulate an algorithmic framework 
for an inversion-based clustering approach as a type of 
partitioning clustering method and then we instantiate 
the framework with different measures to specify two 
inversion-based clustering algorithms. The main steps of 
a partitioning clustering method are as follows. First, the 
number of desired clusters is chosen and initial centroids 
in the range of the feature values are randomly selected. 
Next, every input object is assigned to the nearest cen-
troid based on its distance from it using the similarity 
measure. Every centroid is then moved to the mean loca-
tion of its assigned cluster, and this process is iteratively 
repeated until convergence is reached, as indicated by no 
further changes in assignments [25]. The pseudo-code of 
proposed algorithmic framework can be found as Supple-
mentary Code 2 (see Additional file 1).

Algorithmic framework for inversion‑based clustering
The steps of the algorithmic framework are described 
below.

Input: U = {obj1, obj2, . . . , objk} , number of clusters ( m
)

Output: mclusters(C1,C2, . . . ,Cm)

Step 1) Normalize each feature based on the Min–Max 
Feature scaling method. The normalized feature value Fia 
for feature fa in object obji is calculated as the following 
equation:

(10)
AdjInv(Figure 3_A) =OB+ RB

=1(1)+ 1(1) = 2

(11)
AdjInv(Figure 3_b) =OB+ RB

= 1(3)+ 2(3) = 9

where fia is the original feature value for obji , min(fa) is 
the minimum value and max

(

fa
)

 is the maximum value of 
the feature across all objects in universe U, and Fia is the 
normalized value. The feature space for every normalized 
feature is equal to [0, 1].

Step 2) Initialize the centroids c1, c2, . . . , cm of clusters 
C1,C2, . . . ,Cm randomly.

Step 3) Calculate the number of inversions between 
every combination of an object obji and a centroid cj and 
assign every object to the cluster for the centroid with the 
fewest inversions.

where

Step 4) For each cluster Cj , calculate the new centroid cj 
as the mean of the objects assigned to the cluster:

where

Nj is the number of objects assigned to cluster Cj , and 
the sum is taken over all objects in this cluster.

Step 5) Repeat Steps 3 and 4 until the clusters do not 
change, or the number of iterations reaches a predeter-
mined value.

For the third step of the algorithmic framework, which 
is to assign an object to a cluster using a measure, two 
measures are proposed, which lead to the Inversion-
Based Clustering Algorithm (ICA) and the Regulator 
Inversion Euclidean distance based Clustering Algorithm 
(RIECA).

Approach 1) Inversion‑Based Clustering Algorithm (ICA)
In the first round of ICA, the centroids are randomly 
initialized, then inversions between every combination 
of an object and a centroid are calculated, and finally 
every object is assigned to the centroid with the fewest 
inversions. In subsequent rounds, inversions between 
every combination of an object and an updated centroid 
are calculated. In other words, the measure function is 
defined as follows:

(12)Fia =
fia −min(fa)

max
(

fa
)

−min(fa)

Assign obji to Cluster Cb, where b

= argminj
(

Measure
(

obji, cj
))

(13)1 ≤ i ≤ k , 1 ≤ j ≤ m

cj =
1

Nj

∑

c∈Cj

c

(14)1 ≤ j ≤ m
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where obji is the ith object, Cc is cth cluster (which has 
centroid cc ), and Inv

(

obji, cc
)

 is the number of inversions 
between obji and cc.

Approach 2) Regulator Inversion Euclidean distance based 
Clustering Algorithm (RIECA)
With RIECA, inversion is used as a regulator for Euclid-
ean distance [17], i.e. the Euclidean distance is multiplied 
by the number of inversions. If the number of inversions 
is high, the value of the measure grows more than if the 
number of inversions is low. In this approach, the Meas-
ure function is defined as follows:

where

where Obji is the ith object, cc is the cth cluster, 
Inv

(

Obji, cc
)

 is the number of inversions between Obji 
and cc , and E

(

Obji, cc
)

 is the Euclidean distance between 
Obji and cc.

Results
This section describes the generation of synthetic data 
and the evaluation of the proposed approach, which cor-
respond to the final two steps of the flowchart given in 
section "Data and method".

Generation of synthetic data
Synthetic datasets were generated using the MixSim 
package [26]. The average pairwise overlap parameter 
(denoted as ῶ) in package allows for the creation of clus-
ters with varying degrees of complexity, ranging from 
well-separated (ῶ = 0.001) to highly overlapped ones 
(ῶ = 0.4) [27]. The summary of the package documenta-
tion can be found as Supplementary Documentation 1 
(see Additional file 1).

To evaluate the performance of the ICA and REICA 
algorithms, we generated two types of random data 

(15)Measure
(

obji, cc
)

= Inv
(

obji, cc
)

Measure
(

Obji, cc
)

= Inv
(

Obji, cc
)

∗ E
(

Obji, cc
)

(16)1 ≤ i ≤ k , 1 ≤ c ≤ m

samples for each value of ῶ (0.4, 0.3, 0.2, 0.05, and 0.001). 
The first type of data sample (referred to as Simulated 
Dataset1) comprised 200 random data values with 6 fea-
tures, forming 5 clusters. The second type of data sam-
ple (referred to as Simulated Dataset2) included 500 
random data values with 7 features, forming 10 clus-
ters. These datasets facilitated comprehensive evalua-
tion of algorithm performance across diverse clustering 
complexities.

Evaluation of the proposed approach
The proposed ICA and REICA algorithms are com-
pared with EM clustering [28] from the mclust package 
[29], k-means [3] and hierarchal clustering [30] from 
the stats package, and k-medoids [31] clustering from 
the cluster package [32]. For the comparison, 1000 data 
samples of Simulated Dataset 1 and 1000 of Simulated 
Dataset 2 were prepared and then each algorithm was 
run on each sample separately. The ICA and REICA 
algorithms are implemented in R version 3.4.2 [33]. 
This study employs the adjusted Rand index imple-
mented in the MixSim package to evaluated algorithms 
[26, 34–36]. The values obtained for the adjusted Rand 
index for the algorithms when applied to Simulated 
Dataset 1 are shown in Table 4.

Table  4 shows that for complex cluster structures 
(ῶ = 0.4, 0.3, and 0.2), REICA algorithm outperforms 
other algorithms in cluster formation. However, for 
moderately or highly separated clusters (ῶ = 0.05, 

Table 4 Effectiveness of the algorithms in clustering 6-dimensional datasets of size 200 with 5 clusters (Simulated Dataset 1)

The most effective algorithm is highlighted in bold

0.4 0.3 0.2 0.05 0.001

EM clustering 0.055± 0.027 0.097± 0.044 0.176± 0.064 0.572± 0.098 0.981± 0.032

k-means clustering 0.066± 0.029 0.119± 0.043 0.211± 0.061 0.622± 0.087 0.983± 0.025

k-medoids clustering 0.061± 0.028 0.107± 0.039 0.187± 0.060 0.567± 0.092 0.975± 0.023

Hierarchal clustering 0.058± 0.027 0.103± 0.40 0.185± 0.060 0.574± 0.091 0.979± 0.021

ICA 0.106± 0.029 0.156± 0.040 0.229± 0.054 0.494± 0.092 0.824± 0.093

REICA 0.109± 0.030 0.167± 0.043 0.253± 0.059 0.584± 0.087 0.935± 0.046

Table 5 The most effective algorithm in clustering 
6-dimensional datasets of size 200 with 5 clusters (Simulated 
Dataset 1)

ῶ The most effective algorithm

ῶ = 0.4 REICA, ICA

ῶ = 0.3 REICA

ῶ = 0.2 REICA

ῶ = 0.05 k-means

ῶ = 0.001 k-means, EM, k-mediods, hierarchical
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0.001), both ICA and REICA algorithms perform 
poorly compared to other algorithms. This was antici-
pated, as distance between objects outweighs the influ-
ence of inversions in such scenarios.

To evaluate the statistical significance of the adjusted 
Rand index differences among algorithms, we con-
ducted a one-way ANOVA test. Further details are 
available in Supplementary statistical test result 1 (see 
Additional file 1).

Tables  5 and 6 reveal the optimal algorithm for each 
ῶ value, offering insights into algorithm performance 
across diverse clustering scenarios. These results eluci-
date the efficacy of ICA and REICA algorithms amidst 
varying clustering complexities and separations.

In highly or moderately separated clusters, distance 
becomes more influential, diminishing the role of the 
number of inversions. Consequently, the proposed 
algorithms are less effective in handling such scenarios 
compared to other types of clustering. REICA excelled 
in complex structures, while no algorithm consistently 
outperformed others in highly or moderately separated 
clusters. When ῶ = 0.05, k-means was most effective in 
both simulations. Conversely, with ῶ = 0.001 and a small 
number of clusters and samples (Simulated Dataset 1), 
k-means, EM, K-medoids, and Hierarchical algorithms 
were highly effective. However, with a large number of 
clusters and samples (Simulated Dataset 2), EM algo-
rithm proved most effective. These findings highlight 
algorithm strengths in diverse clustering conditions, 
revealing performance across varying complexities 
and separations. The selection of the optimal algorithm 
depends on specific data characteristics and nature.

Discussion
Clustering techniques encompass partitioning, hier-
archical, density-based, grid-based, and model-based 
methods [25]. The proposed algorithms fall under parti-
tioning clustering. ICA is similar to k-means but utilizes 

an inversion-based similarity measure instead of a dis-
tance measure, whereas REICA utilizes inversion as a 
form of regulation for the Euclidean distance. In REICA, 
Euclidean distance is multiplied by the number of inver-
sions. As a result, when there are more inversions, the 
measure value increases more prominently compared to 
scenarios with fewer inversions. This innovative method 
enriches the algorithm’s ability for intricate cluster han-
dling and enhances data analysis insights.

One strength of this study is that it identified three 
major challenges for Euclidean distance measures: the 
Symmetry challenge, the Place Symmetry challenge, and 
the Feature Independence Challenge. To address these 
challenges, we introduce the inversion-based meas-
ure "Inv." Our findings show the significance of both 
Euclidean distance and inversions for similarity meas-
ures. Particularly, REICA, which multiplies inversions 
by Euclidean distance, outperforms ICA, which relies 
solely on inversions. The effectiveness of REICA, which 
employs a hybrid measure that considers inversions and 
Euclidean distance, suggests potential for developing 
other hybrid measures considering both factors. Such 
measures could prioritize inversion for complex clusters 
and emphasize Euclidean distance for well-separated 
clusters, aligning with k-means and other clustering 
methods.

Another strength of this study is that it benefits from 
applying statistical testing techniques like one-way 
ANOVA to rigorously assess the effectiveness of the pro-
posed algorithms in comparison to existing algorithms. 
Additionally, simulating diverse data samples covering 
various clustering complexities enhances the findings’ 
robustness and generalizability.

One strength of the proposed inversion-based algo-
rithm is its ability to prioritize features differently. This 
prioritization operates at two levels. Firstly, during inver-
sion calculation, equal feature values are sorted based on 
predetermined priority, influencing the number of inver-
sions. Secondly, priority can be introduced as a coeffi-
cient in inversion calculations, where each intersection 
reflects the multiplication of feature priority values. As 
a result, the distance between two objects will increase 
with higher priority values, allowing more flexible and 
nuanced clustering.

For evaluation, the proposed algorithms’ perfor-
mance was compared with classical clustering methods: 
k-means [3], EM clustering [28], hierarchical clustering 
[30], and k-medoids [31]. Results indicate RIECA outper-
forms other algorithms with complex cluster structures 
[37, 38]. However, in scenarios of moderate or high clus-
ter separation, the proposed algorithms are less effective, 
consistent with Berikov [39] and Cupertino [40].

Table 6 The most effective algorithm in clustering 
7-dimensional datasets of size 500 with 10 clusters (Simulated 
Dataset 2)

ῶ The most 
effective 
algorithm

ῶ = 0.4 REICA

ῶ = 0.3 REICA

ῶ = 0.2 REICA

ῶ = 0.05 k-means

ῶ = 0.001 EM
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A limitation of the inversion-based clustering approach 
is its effectiveness sensitivity to initial centroid selection, 
a common challenge in partition-based algorithms [25]. 
Mitigation strategies, such as repetition and employ-
ing the K-means++ initialization method [41], can be 
adapted to address this issue. In this study, we adopt the 
solution of running the algorithm several times with ran-
dom initial centroids [25].

Another limitation is the lack of evaluation on real 
datasets. Assessing an algorithm’s performance on 
actual data is challenging due to unknown cluster com-
plexity. To address this, one could compare synthetic 
datasets with known complexity to real databases to 
gain an understanding of the complexity, then evalu-
ate the algorithms under conditions similar to practical 
tasks. This approach offers insights into real-world per-
formance, establishing their relevance and reliability for 
diverse data analysis scenarios.

Conclusion
This paper emphasizes the significant impact of simi-
larity measures on clustering algorithm performance. 
Existing measures, often reliant on feature values and 
assuming feature independence, may not yield optimal 
results in practice. To address this, we introduced the 
innovative inversion-based Inv measure, which consid-
ers other object and feature values through inversion. 
We proposed two algorithms (ICA and RIECA) based 
on Inv measure, and evaluated their performance using 
simulated data. Results showed inversion-based clus-
tering outperformed traditional techniques for complex 
cluster structures.

Future studies can explore practical applications of the 
Inv measure in real-world problems to improve cluster-
ing performance across domains. Further research could 
investigate other hybrid measures combining inversions 
and distance-based measure.
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