Skip to main content
Figure 1 | BMC Research Notes

Figure 1

From: A systems biology analysis of long and short-term memories of osmotic stress adaptation in fungi

Figure 1

Osmosensing networks. The osmosensing signaling network in S. cerevisiae includes the Sln1 and Sho1 branches which converge at Pbs2 and eventually activate Hog1 by dual phosphorylation [11]. Under normal turgor pressure (i.e. in the absence of hyperosmotic condition), Sln1, a transmembrane protein upstream of the Sln1 branch, is autophosphorylated. This leads to phosphorylation of Ypd1, which subsequently transfers the phosphate group to Ssk1. The phosphorylated form of Ssk1 is unable to activate Ssk2 or Ssk22 via phosphorylation. Under hyperosmotic conditions, autophosphorylation of Sln1 is inhibited. This inactivates Ypd1 and consequently abrogates the inhibition of Ssk1. This is followed by the subsequent activation of the MAPKKK Ssk2 and ultimately of Hog1. Putative osmosensors Hkr1 and Msb2 that lie upstream of the Sho1 branch are postulated to directly sense the extracellular osmolarity [12]. Cdc42 interacts with and activates membrane associated Ste20 or Cla4 [13]. In addition, Cdc42 is able to bind the Ste11-Ste50-Opy2 complex (targeted to the membrane by Opy2) to bring activated Ste20 or Cla4 to their substrate Ste11 [14]. Docked with membrane-bound Sho1, activated Ste11 phosphorylates Pbs2 and eventually activates Hog1. The components of this network that are currently understood in C. albicans are depicted in the dotted box [15].

Back to article page