Skip to main content

Table 1 Distribution of digits in a sample of 8000 values with mean 39.61500

From: How many of the digits in a mean of 12.3456789012 are worth reporting?

Decade Digit mIQ
0 1 2 3 4 5 6 7 8 9
A: SEM 1.33a
 10’s 4954 3046 889
 1’s 1900 836 267 36 10 23 180 713 1727 2309 496
 0.1’s 785 785 764 841 807 751 827 851 813 776 193
 0.01’s 816 773 798 787 810 830 784 794 816 792 100
 0.001’s 849 782 809 818 766 790 820 792 775 799 133
 0.0001’s 809 789 781 817 815 782 831 803 771 802 107
B: SEM 0.0133 (only 1/100 that in A above)
 10’s 8000 1000
 1’s 8000 1000
 0.1’s 950 7050 889
 0.01’s 1845 2330 1838 808 200 29 3 23 177 747 503
 0.001’s 823 802 828 783 790 770 831 786 787 800 117
 0.0001’s 818 766 822 812 778 796 814 823 793 778 124
 0.00001’s 788 834 788 817 788 839 841 807 741 757 101
  1. Values drawn randomly from a Gaussian (‘normal’) population with mean 39.61500 and SEM as shown. The target digit in each decade is in italic; the most frequent digit in each row/decade is underlined. ‘–’ represents ‘0’. The sample of 8000 is an arbitrary choice that gives cell entries (in the lower rows) three digits. One measure of inequality along a row is IQ (the standardised sum of absolute differences from the row mean, range 0–1, see text), presented here multiplied by 1000 as mIQ
  2. aBy the 0.1’s the target digit is not the most frequent