Skip to main content
Fig. 3 | BMC Research Notes

Fig. 3

From: Timed relay contact closure controlled system for parallel second dimensions in multi-dimensional liquid chromatography

Fig. 3

Arrangement of instruments, wireless communication contact closure system (WCCCS) (with sender boards, receivers, and switchable contact closure distribution manifold) and timed contact closure circuit (TCCC) for comprehensive two-dimensional liquid chromatography (2D-LC) with two parallel second-dimensions [2D(1) and 2D(2)], for LC1MS2 × (LC1MS1 + LC1MS1) = LC3MS4. The Agilent 1200 injected sample into the 1D non-aqueous reversed-phase HPLC system with all flow directed through UV and fluorescence (FLD) non-destructive detectors, then to the splitter composed of Valco tees and fused-silica capillaries to other detectors and switching valves (SVs). In addition to UV and FLD the 1D was monitored by a corona charged aerosol detector (CAD) (collected by two A-to-D converters), a tandem sector quadrupole (TSQ) mass spectrometer operated in atmospheric pressure chemical ionization (APCI) mode, and a high-resolution accurate-mass QExactive orbitrap instrument in electrospray ionization (ESI) mass spectrometry (MS) mode with NH4OCOH electrolyte, for five detectors in the 1D. The SV(1) attached to the Agilent 1290 binary UHPLC system loaded fractions onto a silver-ion column, followed by UV detection, then detection by atmospheric pressure photoionization (APPI)-MS on a TSQ instrument (with acetone dopant added via syringe pump). SV(1) was controlled by the Agilent OpenLab ChemStation (OLCS) 2D-LC software. SV(2) loaded sample onto the Agilent 1290 quaternary UHPLC system with C8 column, followed by detection by UV, then splitting to go through another FLD and to an evaporative light-scattering detector (ELSD) and the other branch going to an LCQ Deca XP ion trap mass spectrometer in ESI-MS mode with NH4OCOH electrolyte. The 2D SV(2) was controlled by the TCCC via the WCCCS, with a manually programmed shifted gradient in the OLCS software

Back to article page