Skip to main content
Fig. 1 | BMC Research Notes

Fig. 1

From: Fe(2)OG: an integrated HMM profile-based web server to predict and analyze putative non-haem iron(II)- and 2-oxoglutarate-dependent dioxygenase function in protein sequences

Fig. 1

Non-haem iron(II)- and 2-oxoglutarate-dependent dioxygenase based catalysis. This large superfamily of enzymes is characterized by a variable reaction chemistry, broad spectrum of substrates and is present in all kingdoms of life. The enzymes are characterized by a triad of Histidine, Aspartic-/Glutamic-acid and Histidine residues which co-ordinate ferrous iron. 2OG and the substrate. Enzymes are classified on the basis of the substrate(s) transformed and dominant reaction chemistry. Each cluster is a HMM-profile of at least two members and is derived from enzymes with available empirical data (structure, kinetic, mRNA expression). ALKB Alk-B like demethylase, ARGI Arginine hydroxylase; ASPA Aspartyl:Asparaginyl hydroxylase, CHLO Chlorinating enzyme, CLAS Clavaminate synthase; COLY Collagen lysyl dioxygenase, CP3H Collagen prolyl 3-hydroxylase, CP4H Collagen prolyl 4-hydroxylase, CYCL Cyclization and ring closure, DACS Deacetoxycephalosporin-C synthase, DSAT Desaturases, ECTO Ectoine hydroxylase, FLAV 2S-Flavones, GBBH γ-butyrobetaine hydroxylase; GIAC Gibberellic acid modification, HILY Histone lysyl demethylase, HP4H Hypoxia prolyl 4-hydroxylase, HYOS Hyoscyamine hydroxylase, NUHY Nucleotide/nucleoside hydroxylase, OGFD Eukaryotic initiation factor 2α, PHYT Phytanoyl-CoA hydroxylase, PTLH 1-Deoxypentalenic acid 11β-hydroxylase, SULF Sulfate cleaving, TFDA 2,4-Diphenoxyacetic acid metabolizing, THYD Thymdine dioxygenase, THYE Thymine dioxygenase, XANT Xanthine hydroxylase

Back to article page