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Abstract
Background: RNA interference (RNAi) has been seen as a revolution in functional genomics and
system biology. Genome-wide RNAi research relies on the development of RNAi high-throughput
screening (HTS) assays. One of the most fundamental challenges in RNAi HTS is to glean biological
significance from mounds of data, which relies on the development of effective analytic methods
for selecting effective small interfering RNAs (siRNAs).

Findings: Based on a recently proposed parameter, strictly standardized mean difference (SSMD),
I propose an analytic method for genome-wide screens of effective siRNAs through assessing and
testing the size of siRNA effects. Central to this method is the capability of SSMD in quantifying
siRNA effects. This method has relied on normal approximation, which works only in the primary
screens but not in the confirmatory screens. In this paper, I explore the non-central t-distribution
property of SSMD estimates and use this property to extend the SSMD-based method so that it
works effectively in either primary or confirmatory screens as well as in any HTS screens with or
without replicates. The SSMD-based method maintains a balanced control of false positives and
false negatives.

Conclusion: The central interest in genome-wide RNAi research is the selection of effective
siRNAs which relies on the development of analytic methods to measure the size of siRNA effects.
The new analytic method for hit selection provided in this paper offers a good analytic tool for
selecting effective siRNAs, better than current analytic methods, and thus may have broad utility in
genome-wide RNAi research.

Findings
Background
Mean difference, fold change, percent inhibition, percent
activity, percent viability, Z-score and their robust ver-
sions have been used to quantify effect size of an siRNA or
a compound in HTS assays [1-7]. However, these metrics
have issues in capturing data variability or being affected
by sample size and hence cannot effectively assess the size
of effect. The p-values from the Z-score method (or equiv-
alently Mean ± k SD and its variant Median ± k MAD) and

classical t-test have widely been used to evaluate the
chance of including siRNAs with no specific impact
[1,2,5-7]. However, it is mean difference that these meth-
ods aim to test, and it is well-known that mean difference
cannot effectively measure the magnitude of impact. In
addition, the p-value from the Z-score method or t-test is
affected by both sample size and the size of siRNA effect.

A recently proposed parameter, strictly standardized mean
difference (SSMD) [8], measures the magnitude of impact
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more effectively than any other currently used metrics.
SSMD has been applied for quality control in genome-
scale RNAi research [8-10]. Utilizing the fact that SSMD
effectively measures the size of effect, Zhang proposes an
SSMD-based hit selection method to maintain a balanced
control of both FPR and FNR [11]. This method has also
been applied to select hits in RNAi HTS primary experi-
ments [12]. However, this method is based on normal
approximation, which works only in the primary screens
but not in the confirmatory screens. Here I construct a
new analytic method for hit selection in HTS assays using
non-central t-distribution property of SSMD estimates.
This method works effectively whether sample size is
small or large.

Issues of hit selection methods in primary screens

The size of siRNA effect is commonly assessed using per-

cent inhibition/activation (i.e.,  where y is

the measured intensity of an siRNA,  is the average

intensity of a positive control and  the average inten-

sity of a negative reference) and percent viability/activity

(i.e., ) or fold change (i.e., ). Another com-

monly used method for hit selection in a primary HTS

experiment is the Z-score method (i.e.,  where s- is

sample standard deviation of a negative reference) along
with its variants such as median ± k MAD method. The
issues of Z-score method and its variants have been illus-
trated in [11,12]. The issues of percent inhibition and per-
cent viability are illustrated in Figure 1. Here we consider
the situation where the knockdown of a gene inhibits cell
growth. It is clear that the magnitude of difference
between the sample siRNA (represented by the black
curve) and the negative control (represented by the green
curve) is much less in Plate D than in Plates E and F. That
is, the siRNA in Plate D has less inhibition effect than in
Plates E and F. However, if using percent inhibition, we
would conclude that the inhibition effect of the siRNA in
Plate D (which has a percent inhibition of 27.3) is larger
than the effect of the siRNA in Plate E (which has a percent
inhibition of 20). If using percent viability, we would con-
clude that the inhibition effect of the siRNA in Plate D
(which has a percent viability of 83.3) is larger than the
effect of the siRNA in Plate E (which has a percent viability
of 93.8). Therefore, both percent inhibition and percent
viability produce misleading results.

Issues of hit selection methods in screens with replicates
In all confirmatory HTS screens and some primary
screens, there are several sets of source plates. Each set is
unique and has replicates (usually triplicates), thus each
siRNA has replicates. Because plate-to-plate variability is
usually higher than within-plate variability, a paired t-test
is often used for hit selection in a confirmatory screen.
That is, for each siRNA, we calculate the difference
between the measured intensity of the siRNA and average
intensity of a negative control in a plate, then calculate the
corresponding p-value of the paired t-test in which the
null hypothesis of zero mean difference is tested.

The strength of siRNA impact in a screen with replicates is
represented by the magnitude of a paired difference
between the measured intensity of an siRNA and average
intensity of a negative reference. For one siRNA, a good
metric for the assessment of siRNA effect should have one
fixed population value and should have estimated values
distributed around this population value if it is a statistical
parameter. If it is not a statistical parameter, a good metric
should have values distributed around a fixed value that
can indicate effect size of the siRNA. The t-value, Z-score
and their corresponding p-values are not statistical param-
eters. The t-values of the samples from siRNA A are not
distributed around a fixed value, and actually go to infin-
ity as sample size increases (blue points in Panel A3 of Fig-
ure 2). The corresponding p-values go to zero and thus
cannot indicate the effect size of the corresponding siRNA
(blue points in Panel A4). A similar situation occurs for
the t-values and p-values corresponding to siRNA B (blue
points in Panels B3 and B4 of Figure 2).

It is clear that the magnitude of paired difference for
siRNA A is much larger than for siRNA B although the
mean of the paired difference in Panel A1 (i.e., 2.5) is
smaller than that in Panel B1 (i.e., 3). The black points in
Panels A2 and B2 (i.e., random draws from the popula-
tions in Panels A1 and B1 respectively) also demonstrate
that the magnitude of the paired difference in Panel A1 is
larger than that in Panel B1. Therefore, a good metric for
the assessment of siRNA impact should have a larger (or
smaller) value for siRNA A than the value for siRNA B in
the case where a large (or small) value of this metric indi-
cates a large effect size. The t-value and p-value are both
affected by sample size; thus we may obtain a larger p-
value (or smaller t-value) corresponding to the samples
from siRNA A than from siRNA B. For example, the p-val-
ues corresponding to the samples with 2 or 3 replicates
from siRNA A are larger than the p-values corresponding
to the samples with at least 10 replicates from siRNA B
(Panels A4 and B4 of Figure 2). Therefore, the p-value
from t-test or Z-score method cannot effectively measure
the strength of siRNA impact.
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Assessment of siRNA effects using SSMD
SSMD is a statistical parameter that measures the magni-
tude of both paired and unpaired differences and thus can
be used to measure the magnitude of impact of siRNAs in
both primary and confirmatory screens. For example, the
values of SSMD between the siRNA and the negative con-
trol are 1.33, 3.54 and 3.54 in Plate D, E and F respec-
tively, which appropriately indicates that the effect of the
siRNA in Plate D is less than in Plates E and F and that the
effect of the siRNA in Plate E is the same as in Plate F (Fig-
ure 1). The population values of SSMD for siRNA A and
siRNA B are 3.54 and 0.71 respectively (Figure 2). The esti-
mated SSMD values (denoted by the green points) all fall
around the population values of SSMD (denoted by the

orange lines) and do not have an increasing trend as sam-
ple size increases (Panels A3 and B3 of Figure 2). All these
results indicate that SSMD appropriately indicates the
effect size of an siRNA, better than percent inhibition/via-
bility and p-value from t-test of testing no mean differ-
ence.

Based on both original and probability meanings of
SSMD, an SSMD-based 1-2-3 rule [11], along with its
extended version, has been proposed for classifying siRNA
impact. The SSMD-based 1-2-3 rules provide a guideline
for classifying the strength of siRNA impact. For example,
in Figure 1, the siRNA in Plate D is classified as "moderate
inhibition effect" and the siRNAs in Plates E and F are

Comparison of mean difference (Diff.mean), percent inhibition (% Inhibition), percent viability (% Viability) and SSMD in three plates D, E and FFigure 1
Comparison of mean difference (Diff.mean), percent inhibition (% Inhibition), percent viability (% Viability) 
and SSMD in three plates D, E and F. The population distributions of a positive control (red curve), a sample siRNA 
(black curve) and a negative control (green curve) in Plates D, E and F are displayed in Panels D1, E1 and F1 respectively. Panels 
D2, E2 and F2 show 16 random draws from the positive control (red points), 16 draws from the negative control (green 
points), another 200 draws from the negative control (blue points) and 152 draws from the sample siRNA (black points) in 
Plates D, E and F respectively.
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both classified as "strong inhibition effect". In Figure 2,
siRNAs A and B are classified as "strong inhibition effect"
and "weak inhibition effect" respectively. The 1-2-3 rule
and extended 1-2-3 rule work in the situation where the
population value of SSMD is known; they also work rea-
sonably when sample size is large. In practice, the popula-
tion value of SSMD is unknown and sample size is small
especially in confirmatory RNAi HTS experiments. In such
a case, we can provide a point estimate and a confidence
interval of SSMD for each siRNA based on its estimated
SSMD value [see additional file 1].

A balanced control of false positives and false negatives

Based on SSMD, we may maintain a flexible and balanced
control of both the false negative rate (FNR), in which the
siRNAs with strong effects are not selected as hits, and the
restricted false positive rate (RFPR), in which the siRNAs
with weak or no effects are selected as hits. The maximum
RFPR and FNR in a decision rule are called restricted false
positive level (RFPL) and false negative level (FNL),
respectively. To use the SSMD-based method for selecting
hits in the direction of positive values in HTS assays, we

need to search for a cutoff β* for the estimated SSMD so

SSMD, Z-score and p-value of random samples of two paired differences corresponding to two siRNAs, siRNA A and siRNA B, respectivelyFigure 2
SSMD, Z-score and p-value of random samples of two paired differences corresponding to two siRNAs, siRNA 
A and siRNA B, respectively. Panels A1–A4 correspond to siRNA A and Panels B1–B4 correspond to siRNA B. Panels A1 
and B1 display the population distributions of paired differences for siRNAs A and B respectively. Panels A2 and B2 show the 
appearance of random samples of the paired differences for siRNAs A and B respectively. "Diff.mean" and "Diff.sd" denote the 
mean and standard deviation of a paired difference respectively. In Panels A3 and B3, the blue (or green) points denote the t-
values (or SSMD estimated values) of samples from siRNA A and siRNA B respectively; the orange lines denote the SSMD pop-
ulation values. In Panels A4 and B4, the blue points denote the p-values from t-test of testing paired difference mean and the 
red lines denote the cutoff of 0.01.
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that we can maintain a balanced control of both RFPR and
FNR when we use the decision rule of declaring an siRNA

as a hit if it has  ≥ β* and as a non-hit otherwise. The

search of a cutoff can be achieved through error-cutoff
plots in which we plot RFPLs and FNLs versus cutoffs of
estimated SSDM values, as shown in Figure 3.

Based on Table 1, we calculate RFPL and FNL correspond-

ing to each set of values for β*, c1 and c2. In a primary

screen, the majority of sample wells may be used as the
negative reference in a plate. In such a case, n2 is about

300. To select hits in the direction of positive values, we
calculate RFPLs with respect to (w.r.t.) c2 = 0, 0.25, 0.5, 1

and FNLs w.r.t. c1 = 2, 3, 4.5 (Panel A1 of Figure 3). The

commonly used error rates are 0.05, 0.025 and 0.01 in
one direction. From Panel A1 of Figure 3, a cutoff between
1.4 and 1.8 can control RFPL w.r.t. c2 = 0 to be less than

0.025, RFPL w.r.t. c2 = 0.25 to be less than 0.051 and FNL

w.r.t. c1 = 3 to be less than 0.05. A cutoff between 1.9 and

2.1 can control RFPL w.r.t c2 = 0 to be less than 0.005,

RFPL w.r.t c2 = 0.25 to be less than 0.01, and FNL w.r.t. c1

= 3 to be less than 0.10. Therefore, any cutoff between 1.4
and 2.1 for SSMD is theoretically reasonable and main-
tains a balanced control of RFPR and FNR for selecting
hits in the direction of positive values. Similarly, to select
hits in the direction of negative values, a reasonable cutoff

b̂

Error-cutoff plots for controlling both restricted false positive level (RFPL) and false negative level (FNL) in RNAi HTS assaysFigure 3
Error-cutoff plots for controlling both restricted false positive level (RFPL) and false negative level (FNL) in 
RNAi HTS assays. Panels A1 and A2 are for primary screens without replicates and Panels B1 and B2 are for confirmatory 
screens with triplicates. The unlabeled grey horizontal lines in the bottom of each panel indicate error rates of 0.025 and 0.01, 
respectively.
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is between -2.1 and -1.4 when we use the decision rule of

declaring an siRNA as a hit if it has  ≤ β* and as a non-

hit otherwise (Panel A2 of Figure 3). Similarly from Panels
B1 and B2 of Figure 3, in confirmatory screens with tripli-
cates, a reasonable cutoff is between 1 and 1.4.

The choice of an exact cutoff between 1.4 and 2.1 (or
between -2.1 and -1.4) in a real primary experiment relies

on the refined tolerance of false positives and false nega-
tives and the capacity of follow-up studies after that exper-
iment. For example, if one has a low tolerance in missing
hits with SSMD greater than 2 or 3 (or less than -2 or -3),
one may choose a cutoff between 1.4 and 1.6 (or between
-1.6 and -1.4). On the other hand, if follow-up studies
have a low capacity of including selected hits, one may
choose a cutoff between 1.8 and 2.1 (or between -2.1 and
-1.8). These cutoffs may maintain a balanced control of

b̂

Table 1: SSMD-based decision rules and their false negative levels (FNLs) and restricted false positive levels (RFPLs) for hit selection in 
RNAi HTS experiments

I: Select up-regulated siRNAs (c1 ≥ c2 ≥ 0)

Selection Criterion FNL RFPL

Ia:  ≥ β*

Ib: 
α1

Ic: α2

II: Select down-regulated siRNAs (c1 ≤ c2 ≤ 0)

Selection Criterion FNL RFPL

IIa:  ≤ β*

IIb: 
α1

IIc: α2

Notes:

(i)  is the estimate of SSMD and β* is a cutoff of SSMD;  = kT where T has a noncentral t-distribution with degree of freedom ν and non-

central parameter bβ, namely T ~t(ν, bβ); Ft(ν, bβ) (·) and Qt(ν, bβ) (α) are the cumulative distribution function and the α quantile of t(ν, bβ) 

respectively.

(ii) For an unpaired difference,  and  where 

, N = n1 + n2, and n1, , s1, n2, , s2 are sample size, mean and standard deviation in two groups 

respectively; , ν = N - 2, .

(iii) For a paired difference,  and  where n,  and sD are sample size, sample mean and standard deviation of 

a paired difference respectively; , ν = n - 1, .
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both RFPR for including siRNAs with weak or no effects
and FNR for excluding siRNAs with strong effects.

Discussion
SSMD is usually applied to the measured intensity of each
siRNA individually. In some screens, there may be a need
to pool multiple measured values to a single value. For
example, in the situations where there are two or more
wells for each siRNA in a plate, we may use the mean or
median of these replicates to represent the measured
intensity of this siRNA. In screens where multiple siRNAs
are designed to target the same gene to account for off-tar-
get effects, there may be a need to pool information across
these siRNAs to form a single value for a gene. In those sit-
uations, SSMD can be applied to the pooled value for
either an siRNA or a gene especially when the pooled
value has a symmetric or nearly normal distribution.
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