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Abstract

Background: Haemophilus influenzae requires a porphyrin source for aerobic growth and
possesses multiple mechanisms to obtain this essential nutrient. This porphyrin requirement may
be satisfied by either heme alone, or protoporphyrin IX in the presence of an iron source. One
protein involved in heme acquisition by H. influenzae is the periplasmic heme binding protein HbpA.
HbpA exhibits significant homology to the dipeptide and heme binding protein DppA of Escherichia
coli. DppA is a component of the DppABCDF peptide-heme permease of E. coli. H. influenzae
homologs of dppBCDF are located in the genome at a point distant from hbpA. The object of this
study was to investigate the potential role of the H. influenzae dppBCDF locus in heme utilization.

Findings: An insertional mutation in dppC was constructed and the impact of the mutation on the
utilization of both free heme and various proteinaceous heme sources as well as utilization of
protoporphyrin IX was determined in growth curve studies. The dppC insertion mutant strain was
significantly impacted in utilization of all tested heme sources and protoporphyin IX.
Complementation of the dppC mutation with an intact dppCBDF gene cluster in trans corrected the
growth defects seen in the dppC mutant strain.

Conclusion: The dppCBDF gene cluster constitutes part of the periplasmic heme-acquisition
systems of H. influenzae.

Background the immediate precursor of heme. Since H. influenzae can-

Haemophilus influenzae are fastidious facultatively anaero-
bic Gram-negative bacteria that cause a range of human
infections including otitis media, meningitis, epiglottitis
and pneumonia [1,2]. H. influenzae lacks all enzymes in
the biosynthetic pathway for the porphyrin ring and as a
result is unable to synthesize protoporphyrin IX (PPIX),

not synthesize PPIX the organism has an absolute growth
requirement for an exogenous source of PPIX or heme
[3,4]. As a result of this growth requirement H. influenzae
has evolved a complex multifunctional array of uptake
mechanisms to ensure that it is able to utilize available
porphyrin in vivo [5]. One protein shown to be involved
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in utilization of heme by H. influenzae is the heme bind-
ing lipoprotein HbpA [6-8]. HbpA was initially identified
as a potential constituent of a heme acquisition pathway
following transformation of an H. influenzae genomic
DNA library into Escherichia coli and screening for recom-
binant clones with heme-binding activity [7]. Expression
of heme-binding activity by E. coli correlated with the
expression of a protein of approximately 51-kDa, sized on
SDS-PAGE gels, that was subsequently purified in a heme-
agarose affinity purification protocol, from both recom-
binant E. coli and H. influenzae, and shown to be a lipo-
protein [7]. Additionally HbpA was localized to the
periplasmic space and shown to be associated with both
the inner membrane and the outer membrane in H. influ-
enzae [7,8]. Subsequently HbpA was shown definitively to
have a role in heme utilization in multiple H. influenzae
strains and to be important in virulence in both mouse
and rat models of H. influenzae bacteraemia [6,9,10].

HbpA exhibits significant homology to the periplasmic
dipeptide binding protein DppA of Escherichia coli (for
example in comparing HbpA from nontypeable H. influ-
enzae strain HI1388 [Genbank Accession No. AAY87900]
and DppA from E coli K12 substrain MG1655 [Genbank
Accession No. AAC76569] the two proteins exhibit 51.3%
identity and 64.1% consensus as determined using the
AlignX tool of Vector NTI 10.3.0). In E. coli DppA func-
tions with the dipeptide ABC transporter DppBCDF to
transport both peptides and heme across the periplasmic
space [11-13]. This E. coli DppABCDF peptide-heme per-
mease is encoded by the consecutive genes dppABCDF. In
H. influenzae the gene encoding HbpA is not located near
the genes encoding the H. influenzae DppBCDF proteins.
In the H. influenzae strain Rd KW20 genomic sequence
hbpA has the locus tag HIO853 while the dppBCDF
homologs are located at HI1184-1187 [14]. Although it
has not been experimentally established bioinformatic
analyses indicate that there is a promoter upstream of
dppB and that the dppBCDF gene cluster in H. influenzae is
transcribed on a polycistronic message. The H. influenzae
DppBCDF proteins exhibit significant homology to the
DppBCDF proteins of E. coli; in pairwise comparisons of
the proteins from H. influenzae strain Rd KW20 and from
E. coli K12 substrain MG1655 identities were respectively
59.6% for DppB, 61.3% for DppC, 73.1% for DppD and
74.6% for DppF. Since the dppBCDF locus in E. coli is
known to be involved in heme utilization we examined
the potential role of the homologous H. influenzae locus
in the utilization of this essential growth factor.

Methods

Bacterial strains and growth conditions
H. influenzae Rd KW20 (ATCC 51907) is the strain used in
the original H. influenzae genome sequencing project and
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was obtained from the ATCC. H. influenzae were routinely
maintained on chocolate agar with bacitracin (BBL, Bec-
ton-Dickinson, Sparks, MD, USA) at 37°C. When neces-
sary, H. influenzae were grown on brain heart infusion
(BHI) agar (Difco, Becton-Dickinson, Sparks, MD, USA)
supplemented with 10 pg ml-! heme and 10 pg ml-!p-
NAD (supplemented BHI; sBHI) and the appropriate anti-
biotic(s). Heme-deplete growth was performed in BHI
broth supplemented with 10 pg ml-'3-NAD alone (heme-
deplete BHI; hdBHI). Kanamycin was used at 20 pug ml-!
and chloramphenicol was used at 1.5 pg ml- for growth of
H. influenzae.

Heme sources

Human hemoglobin, human haptoglobin from pooled
human sera, human serum albumin (HSA), and heme (as
hemin) and PPIX were purchased from Sigma. Stock
heme solutions (1 mg ml! heme in 4% v/v trieth-
anolamine) were prepared as previously described [15]
(heme is correctly defined as ferrous PPIX while hemin is
ferric PPIX; however for the purposes of this manuscript
heme is used as a general term and does not indicate a par-
ticular valence state). PPIX stock solutions at 1 mg ml!
were made in water and autoclaved prior to use. Hemo-
globin was dissolved in water immediately before use.
Hemoglobin-haptoglobin complexes and heme-albumin
complexes were prepared as previously described [16,17].

Construction of a dppC insertional mutant

An insertional mutation in dppC was constructed as part of
an unrelated study [18]. A chromosomal library of H.
influenzae strain Rd KW20 was constructed as follows: H.
influenzae chromosomal DNA was digested with Pvu II
and phosphorylated Asc 1 linkers were ligated to the
digested DNA at 15°C overnight. Fragments were sepa-
rated by agarose gel electrophoresis and fragments in
excess of approximately 2000-bp were purified. The puri-
fied fragments were digested with Asc I and ligated to Asc
I digested pASC15 (pASC15 is a minimalized vector con-
taining a unique Asc I site that was constructed as part of
the previous unrelated study [18]). The ligation mixture
was transformed into electrocompotent E. coli DH50. and
recombinant plasmids were recovered. The recombinant
H. influenzae library was mutagenized using the
EZ::Tn<KAN-2> kit (Epicentre technologies) as directed
by the manufacturer. Transposon insertion sites were
mapped by sequencing out from the transposon unit into
the flanking DNA. A plasmid was identified with a trans-
poson insertion within the coding sequence of dppC dis-
rupting codon 290 out of a total of 295 codons. The
mutated plasmid was designated pASC1262 and was used
to transform H. influenzae Rd KW20 to kanamycin resist-
ance using a modification of the static-aerobic method as
previously described [19]. A kanamycin-resistant trans-
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formant with the correct chromosomal rearrangement
was identified using the PCR and designated as H. influen-
zae strain TMV1262.

Complementation of the dppC insertional mutant

To complement the dppC mutation a plasmid was con-
structed carrying the entire dppBCDF operon. A 4100-bp
PCR product, encompassing the entire dppBCDF gene
cluster, as well as 100-bp upstream of the start codon of
dppB and 110-bp downstream of the stop codon of dppF,
was amplified from H. influenzae strain Rd KW20 chromo-
somal DNA using the primers dppBCDF-1 and dppBCDF-
2 having the sequences 5'-GGATCCTCCGATAGGATCT-
GTG-3' and 5'-GGATCCGTGCGGTAGAATTCAAGAG-3'
respectively. The primers dppBCDF-1 and dppBCDF-2
were designed to add Bam HI sites to each end of the PCR
product in order to facilitate subsequent subcloning. The
PCR was performed in a 50 pl volume using 100 ng of H.
influenzae Rd KW20 chromosomal DNA as template, and
the reactions contained 2 mM MgCl,, 200 uM of each
deoxynucleoside triphosphate (New England Biolabs), 10
pmol of each primer and 2 U of Taq DNA Ploymerase
(Roche). PCR was carried out for 30 cycles, with each cycle
consisting of denaturation at 95°C for 1 min, annealing
for 1 min at 56 °C and primer extension at 72°C for 4 min
with one final extension of 30 min. An amplicon of the
expected size was cloned into pCR2.1-TOPO to yield
PMB26 and confirmed by automated DNA sequencing.
PMB26 was digested with Bam HI and the band corre-
sponding to the chromosomally derived insert was ligated
to Bam HI digested pACYC184, a shuttle vector with the
p15a origin of replication that allows establishment of the
plasmid in H. influenzae, to yield pDJM137. pDJM137 was
confirmed by automated DNA sequencing, and was elec-
troporated into the H. influenzae dppC mutant strain to
yield the corresponding merodiploid strain. Electopora-
tion of H. influenzae was carried out as previously
described [20] and transformants selected on chloram-
phenicol. A transformant containing pDJM137 was iden-
tified and designated HI2208.

Growth studies

Growth studies were performed using the Bioscreen C
Microbiology Reader (Oy Growth Curves AB Ltd., Hel-
sinki, Finland) as previously described [6,21].

Statistics

Statistical comparisons of growth between strains under
the same growth conditions in vitro were made using the
Kruskal-Wallis test. Some analyses were made over
selected periods of growth as specified in the results. Anal-
yses were performed using Analyse-It for Microsoft Excel
v1.71 (Analyze-It Software Inc., Leeds, England). A P
value < 0.05 was taken as statistically significant.

http://www.biomedcentral.com/1756-0500/2/166

Results and discussion

An insertional mutation in the dppC gene of H. influenzae
strain Rd KW20 was constructed as part of an unrelated
study [18]. The dppC mutant strain (TMV1262) contains a
kanamycin resistance marker disrupting codon 290 of the
dppC. The dppC mutant was compared to the wildtype
strain in growth curve analyses for the ability to utilize
various heme sources. Figure 1 shows comparisons of
strains Rd KW20 and TMV1262 for utilization of free
heme at 10, 2 and 1 pg ml-!, at all heme concentrations
the dppC mutant strain grew significantly less well than
the wildtype strain when compared over the entire growth
period (P < 0.0001). In heme at 10 pug ml-! growth of the
mutant strain was the same as the wildtype strain in the
initial part of the growth curve through late exponential
phase i.e. comparing growth over the first 10 hours P =
0.9882 and through 14 hours P = 0.1534. However, at the
lower heme concentrations growth of the mutant was
impaired compared to that of the wildtype strain from the
onset of exponential phase. That growth in heme at 10 pg
ml! is only impacted at later time points likely reflects
decreasing availability of heme. These data support the
contention that the growth difference results specifically
from a perturbation of heme acquisition rather than a
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Growth of H. influenzae strains with free heme as the
sole heme source. Growth of the H. influenzae strain Rd
KW?20 and the dppC insertion mutant strain TMV1262 in
hdBHI supplemented with heme as the sole heme source.
Wildtype strain Rd KW?20 at 10 pg ml-' heme (solid circles),
at 2 pug ml-'(solid triangles) and at 1.25 pg ml-! (solid squares).
The dppC insertion mutant strain TMV1262 at 10 pg ml-!
heme (open circles), at 2 pg ml-! (open triangles) and at 1.25
pg ml-' (open squares). Results are mean + SD for quintupli-
cate results from representative experiments. The Kruskal-
Wallis test was used to compare growth of Rd KW20 and
TMV1262 over the entire 24 hour growth period at all heme
concentrations (P < 0.0001 for all comparisons).
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general growth curve since in the latter circumstance the
growth defect would be apparent at all heme concentra-
tions.

In addition to free heme the wildtype and dppC mutant
strain were compared for utilization of various potential
proteinaceous heme sources. In each case the dppC
mutant strain grew significantly less well than the
wildtype strain at all tested concentrations (Figure 2 for
heme-human serum albumin; Figure 3 for hemoglobin;
Figure 4 for hemoglobin-haptoglobin complexes). Onset
of growth for the wildtype strain in both heme-human
serum albumin and hemoglobin-haptoglobin complexes
appears to be significantly delayed compared to that in
either heme or hemoglobin. These observed differences
may reflect the different concentrations used for each
heme source. For example growth in heme was performed
at 10, 2.5 and 1.25 pg ml!, whereas growth in heme-
human serum albumin complex was performed at 200 or
100 ng ml! with respect to heme. These apparent differ-

OD 600nm

Time (Hours)

Figure 2

Growth of H. influenzae strains with heme-human
serum albumin as the sole heme source. Growth of the
H. influenzae strain Rd KW20 and the dppC insertion mutant
strain TMV 1262 in hdBHI supplemented with heme-human
serum albumin as the sole heme source. Wildtype strain Rd
KW?20 with heme-human serum albumin at 200 ng ml-! heme
equivalent (solid circles) and with heme-human serum albu-
min at 100 ng ml-! heme equivalent (solid triangles). The dppC
insertion mutant strain TMV1262 with heme-human serum
albumin at 200 ng ml-! heme equivalent (open circles) and
with heme-human serum albumin at 100 ng ml-' heme equiv-
alent (open triangles). Results are mean + SD for quintupli-
cate results from representative experiments. The Kruskal-
Wallis test was used to compare growth of Rd KW20 and
TMV 1262 over the entire 24 hour growth period at either
concentration of heme-human serum albumin (P < 0.0001 for
both comparisons).
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Figure 3

Growth of H. influenzae strains with human hemo-
globin as the sole heme source. Growth of the H. influen-
zae strain Rd KW?20, the dppC insertion mutant strain
TMV1262 and the complemented dppC mutant strain HI2208
in hdBHI supplemented with human hemoglobin as the sole
heme source. Wildtype strain Rd KW20 with human hemo-
globin at 30 pug ml-! (solid circles) and at 10 pg ml-! (solid tri-
angles). The dppC insertion mutant strain TMV 1262 with
human hemoglobin at 30 pug ml-! (open circles) and at 10 ug
ml-' (open triangles). The complemented dppC mutant strain
HI2208 with human hemoglobin at 10 pig ml-! (solid squares).
Results are mean * SD for quintuplicate results from repre-
sentative experiments. The Kruskal-Wallis test was used to
compare growth of Rd KW20 and TMV 1262 over the entire
24 hour growth period at either concentration of hemo-
globin P < 0.0001 and to compare growth of TMV1262 and
HI2208 over the entire 24 hour growth period in 10 pg ml-!
hemoglobin (P < 0.0001 for all comparisons).

ences in onset of growth may also reflect different affini-
ties of the appropriate H. influenzae outer membrane
receptor proteins for their substrate, although no data is
currently available to support this contention.

In addition to the above studies with various heme
sources the impact of the dppC mutation on the utiliza-
tion of PPIX was also determined. Growth curves were
performed with hdBHI supplemented with PPIX at vari-
ous concentrations in the presence of 200 uM ferrous
ammonium sulfate. Figure 5 shows comparisons of
strains Rd KW20 and TMV1262 for utilization of PPIX at
2.5 and 0.5 pg ml-1, at both concentrations of PPIX
growth of the dppC mutant strain was significantly
impaired compared to that of the wildtype strain (P <
0.0001 when comparisons were made over the entire
growth period).

That the growth defects reported in this manuscript result

from mutation of dppC is supported by the observation
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Figure 4

Growth of H. influenzae strains with human hemo-
globin as the sole heme source. Growth of the H. influen-
zae strain Rd KW?20, the dppC insertion mutant strain

TMV 1262 and the complemented dppC mutant strain HI2208
in hdBHI supplemented with human hemoglobin-haptoglobin
complex as the sole heme source. Wildtype strain Rd KW20
with human hemoglobin-haptoglobin complex at 10 pg ml-!
hemoglobin equivalent (solid triangles) and at 5 pug ml-
'hemoglobin equivalent (solid circles). The dppC insertion
mutant strain TMV 1262 with human hemoglobin-haptoglobin
complex at 10 pug ml-'hemoglobin equivalent (open triangles)
and at 5 pug ml-! hemoglobin equivalent (open circles). The
complemented dppC mutant strain HI2208 with human
hemoglobin-haptoglobin complex at 10 pg ml-'hemoglobin
equivalent (solid squares) and at 5 ug ml-! hemoglobin equiv-
alent (open squares). Results are mean + SD for quintuplicate
results from representative experiments. The Kruskal-Wallis
test was used to compare growth of Rd KW20 and

TMV 1262 or to compare growth of TMV 1262 and HI2208
over the entire 24 hour growth period at either concentra-
tion of hemoglobin-haptoglobin (P < 0.0001 for all compari-
sons).

that complementation of the mutant strain with an intact
dppBCDF gene cluster corrected the growth defect reported
for the mutant strain (data is shown for growth in hemo-
globin at 10 pg ml! in Figure 3 and in hemoglobin-hap-
toglobin at both 10 and 5 pg ml'! in Figure 4).

The data reported herein indicate that the dppBCDF
operon constitutes part of the H. influenzae periplasmic
heme/porphyrin transport system(s). However, since
heme utilization is not completely abrogated, it is clear
that an additional periplasmic system(s) must be availa-
ble to transport heme. Several potential candidates for
such a system(s) have been identified [9]. One additional
locus potentially involved in periplasmic heme transport
is the sap operon. The sap operon comprises the genes
SapABCDFZ (HI1638-HI1643 in strain Rd KW20) and is

http://www.biomedcentral.com/1756-0500/2/166
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Figure 5

Growth of H. influenzae strains with protoporphyrin
IX. Growth of the H. influenzae strain Rd KW20 and the
dppC insertion mutant strain TMV1262 in hdBHI supple-
mented with protoporphyrin IX at either 2.5 or 0.5 pg ml-!
and additionally supplemented with 200 uM ferrous ammo-
nium sulfate. Wildtype strain Rd KW20 with protoporphyrin
IX at 2.5 pg ml-! (solid circles) and at 0.5 pg ml-! (open cir-
cles). The dppC insertion mutant strain TMV 1262 with pro-
toporphyrin IX at 2.5 ug ml-! (closed triangles) and at 0.5 ug
ml-' hemoglobin equivalent (open triangles). Results are mean
1 SD for quintuplicate results from representative experi-
ments. The Kruskal-Wallis test was used to compare growth
of Rd KW20 and TMV 1262 over the entire 48 hour growth
period at either concentration of protoporphyrin IX (P <
0.0001 for both comparisons). Optical density measurements
were taken every 30 minutes, however, for the purpose of
the clarity of data presentation only hourly time points have
been plotted.

involved in resistance to antimicrobial peptides [22]. The
SapABCDF proteins show significant homology to HbpA
and the H. influenzae DppBCDF proteins, and preliminary
studies indicate a potential role for the sap operon in
heme utilization [23]. Two additional putative periplas-
mic proteins are homologous to both HbpA and SapA and
may be involved in heme acquisition; these two proteins
are encoded by the ORFs designated HI0213 and HI1124
in the H. influenzae strain Rd KW20 genomic sequence
[14]. In a microarray study of the response of Rd KW20 to
iron and heme levels in the growth media the ORF
HI0213 was maximally transcribed under conditions of
iron/heme restriction, supporting a potential role in heme
acquisition [24], although in two additional strains
HI0213 transcript levels were not affected by iron/heme
levels [25]. In Rd KW20 the locus HI0213 is a stand alone
gene encoding a putative permease component of an ABC
transporter, which could potentially interact with the
DppBCDF proteins. The locus HI1124 is the permease
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component of an ABC transporter encoded by the operon
HI1120-HI1124 and designated OppABCDF in the origi-
nal Rd KW20 sequencing project [14]. Although there is as
yet no empirical data for a role of either HI0213 or OppA-
BCDF in heme utilization based on homology to HbpA
and DppBCDF they warrant further investigation.

In conclusion a role for the dppBCDF locus of H. influenzae
in periplasmic heme/porphyrin transport has been identi-
fied. Further studies will seek to elucidate additional peri-
plasmic heme/porphyrin transport systems, and clarify
the precise roles of HbpA and DppBCDF.
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