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Abstract

Background: Discrete RNA structures such as cis-acting replication elements (cre) in the coding
region of RNA virus genomes create characteristic suppression of synonymous site variability
(SSSV). Different phylogenetic methods have been developed to predict secondary structures in
RNA viruses, for high-resolution thermodynamic scanning and for detecting SSSV. These
approaches have been successfully in predicting cis-acting signals in different members of the family
Picornaviridae and Cadliciviridae. In order to gain insight into the identification of cis-acting signals in
viruses whose mechanisms of replication are currently unknown, we performed a phylogenetic
analysis of complete genome sequences from 49 Human Norovirus (NoV) strains.

Findings: The complete coding sequences of NoV ORF| were obtained from the DDBJ database
and aligned. Shannon entropy calculations and RNAalifold consensus RNA structure prediction
identified a discrete, conserved, invariant sequence region with a characteristic AAACG cre motif
at positions 240 through 291 of the RNA dependant RNA polymerase (RdRp) sequence (relative
to strain [EMBL:EU794713]). This sequence region has a high probability to conform a stem-loop.

Conclusion: A new predicted stem-loop has been identified near the 5' end of the RdRp of Human
NoV genome. This is the same location recently reported for Hepatovirus cre stem-loop.

Findings

Internal base pairing that creates stem-loops and other
RNA structures places constraints on sequence variability
in bases required for structure formation in the genome of
RNA viruses. For instance, the Hepatitis C virus (HCV)
genome has a marked suppression of synonymous codon
variability within several evolutionary conserved stem-
loops in the core and NS5B coding regions that demon-
strate their role in virus replication [1-3]. Discrete RNA

structures such as cis-acting replication elements (cre) in
the coding region of human enteroviruses (HEVs) [4] and
other viruses also create characteristic suppression of syn-
onymous site variability (SSSV), similar to that observed
in HCV [5,6]. Different phylogenetic methods have been
developed to predict secondary structures in RNA viruses,
like PFOLD [2,7] or Alifold [8], for high-resolution ther-
modynamic scanning, and like UNAFold [9] for detecting
SSSV [2]. These methods have permitted to identify suita-
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ble genome regions for an in-depth experimental analysis
allowing establishing the role of the identified secondary
RNA structures in translation or replication. This
approach has permitted to raise the hypothesis that when
SSSV (i.e. highly conserved synonymous sites in a RNA
virus genome sequence alignment) takes place in a
sequence region with a high probability of conforming a
secondary structure (i.e. high probability of base pairing
to generate a stable stem-loop), a cis-acting signal can be
identified. This hypothesis has been successfully tested in
different members of the family Picornaviridae, like Hepa-
titis A virus (HAV), Avian Encephalitis virus (AEV) and
Rhinovirus [10,11] and in members of the family Caliciviri-
dae, like Norovirus, Sapovirus, Vesivirus and Lagovirus [12].

In order to gain insight into the identification of cis-acting
signals in viruses whose mechanisms of replication are
currently unknown; we tested the above hypothesis for a
group of 49 Human Noroviruses (NoV), for whom com-
plete genome sequences have been recently obtained.

http://www.biomedcentral.com/1756-0500/2/176

The complete codes of ORF1 of 49 Human NoV were
obtained from the DDBJ database and aligned using the
MUSCLE program [13] (for strain names and accession
numbers see Additional File 1). Once aligned, the Shan-
non entropy at each position of the sequence dataset was
calculated [14]. This permitted to measure the relative var-
iation in each site of a sequence alignment. The results of
these studies are shown in Fig. 1.

Only few, discrete, genome regions in the ORF1 of
Human NoV have a Shannon entropy of zero indicating
that they are invariants among all NoV sequences intro-
duced in this analysis (Fig. 1). Interestingly, one of these
discrete regions has an AAACG cre sequence motif [10] at
position 3948 to 3952 of the alignment. These positions
correspond to positions 240 through 291 of the RNA
dependant RNA polymerase (RdRp) sequence (relative to
strain [EU794713]) (Fig. 1).

In order to observe if this cre motif is situated in a
sequence region that has a high probability to conform a
secondary structure [8,15], we used the RNAalifold Web
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Shannon entrophy in ORFI of Human NoV strains. The Shannon entropy at each position of the alignment is shown.
Location of positions 3922 through 3973 of the alignment (which includes the AAACG motif) in a sequence region with zero
entropy is shown by a red circle. A scheme showing the position of each gene in the NoV genome is shown below the graph.

The location of the stem-loop is indicated sl.
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Server [16]. First, we obtained a graphical representation
of the secondary structure in a plot of height versus posi-
tion, where the height m(k) is given by the number of base
pairs enclosing the base at position k in the structure (i.e.
loops correspond to plateaus, hairpin loops are peaks and
helices to slopes). The results of these studies are shown in
Fig. 2. The AAACG cre sequence motif is embedded in a
sequence region with a very high probability to conform a
stem-loop structure (see Fig. 2).

Then, the consensus RNA structures of the selected align-
ment region were folded using the RNAalifold program
[16]. The resulting structures as well as the alignments
were color-coded according to a coloring scheme for high-

3922 3932 3942

AGCGOOCALCCOCACCACATGOGEAAAAACGACTIGCUGGAACGGGGAATICCT]

Figure 2
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lighting the mutational pattern with respect to the struc-
ture (Vienna RNA conservation coloring schema) [16].
The results of these studies are shown in Fig. 3.

Using the RNAalifold program [16] we have identified the
presence of a unique and conserved stem-loop near the 5'
end of the RdARp coding region for the 49 Human NoV
genomes analyzed (Figs. 1 and 3). This predicted structure
contains a cre sequence motif (Fig. 3). Interestingly, the
stem-loop predicted for Human NoV is situated near the
5' end of the RdRp (Figs. 2 and 3). This is the same loca-
tion recently reported for Hepatovirus cre stem-loop [10]

(Fig. 1).
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"Mountain plot"” of a NoV ORFI sequence region with an entrophy equals to zero. A mountain plot representing a
secondary structure in a plot of height versus position is shown. Sequences from positions 3922 through 3973 of the alignment
are shown at the bottom of the figure. Numbers at the top of the figure show site position in the alignment. Colors corre-

spond to the Vienna RNA conservation coloring schema [16] (see also Fig. 3). Note that the AAACG motif (underlined in red)

is predicted to be located in a loop of the secondary structure.
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Figure 3

Conservation of a predicted secondary structure in NoV ORF| sequences. Multiple sequence alignment across 49
Human NoV ORFI sequences shows a consensus secondary structure from positions 3922 through 3973 of the NoV genome
(positions 240 through 291 of the RdRp sequence, relative to strain [EMBL:EU794713]). The structure is shown in the dot-
bracket format [16] above the alignment. Each corresponding bracket represents consensus base pairs of the alignment col-
umns beneath. Sequences are color-coded according to consistent and compensatory mutations in the aligned sequences
regarding the conserved structure (see figure text box). Pale colors indicate that a base-pair cannot be formed in some
sequences of the alignment. The sequence conservation profile is shown in gray bars bellow the alignment. The conserved pre-
dicted secondary structure, color-coded according to the different types of base pairs in the corresponding alignment columns,

is shown on the right side of the figure.

RNA structure predictions are consistent with previous
analyses based on the thermodynamic folding of individ-
ual sequences [12,17,18]. Although RNA structure is
clearly not the only cause of SSSV, occurring for example
also in overlapping gene sequences [19], there is an
impressive co-localization of the major sites of SSSV and
thermodynamically predicted secondary structures
[4,11,12].

NoV belong to the family Caliciviridae, and they are non-
enveloped viruses with positive, single-stranded RNA
genomes. They also share other important features with
picornaviruses, like having a VPg protein covalently
linked to the 5' of the genomic RNA [20]. Nevertheless, in
contrast with picornaviruses, NoV express a downstream
sub-genomic (sg) transcript encoding structural genes
[20]. NoV are the leading cause of outbreaks of acute gas-
troenteritis in humans worldwide [21].

Page 4 of 6

(page number not for citation purposes)


http://www.ebi.ac.uk/cgi-bin/dbfetch?EU794713

BMC Research Notes 2009, 2:176

Despite the importance of these outbreaks, our under-
standing of the RNA structures or sequences required for
NoV replication has been limited. Previous reports have
identified the poly-pyrimidine tract-binding protein
(PTB), poly-A binding protein (PAB) and La autoantigen
to interact with the 3' untranslated region of the Norwalk
virus genome [17]. Very recent studies have identified cis-
acting signals in the 5' and 3' regions as well as at the start
of the sg RNA transcript of NoV [12].

As a member of the family Caliciviridae, NoV are thought
to replicate in a manner typical of positive-stranded RNA
viruses, through the synthesis of a full-length anti-
genomic strand (reverse complement copy) using the viral
RdRp translated initially from the RNA genome entering
the cell [22]. The minus strand then acts as a template for
the synthesis of full-length genomic RNA from which
non-structural proteins are translated, including the
RdRp. Features of the RARp common to all positive-sense
RNA viruses support this idea [23].

Although the presence of this new putative cis-acting sig-
nal predicted in this study was not yet investigated in vitro
due to the lack of a standard cell culture to grow these
viruses, the probability that this predicted structure will
acts as a functional element may open new avenues to our
understanding of molecular mechanisms of NoV replica-
tion.

Extensive mutagenesis studies performed in members of
the family Picornaviridae, like Poliovirus (PV) and Human
Rhinovirus 14 (HRV-14), revealed a critical conserved
AAACA/G cre sequence motif in the 5' half of the loop
sequence that is essential for its function [10]. Similar
conserved motifs are present within the loops of the cre
elements of other picornaviruses and are important for
RNA replication [10,24,25].

Paul and colleagues (2003) have shown that the PV cre act
as the template for VPg uridylylation through a "slide-
back" mechanism catalyzed by the 3Dre! (RdRp)
[24,26,27]. The uridylylation of VPg leads to the produc-
tion of VPg-pUpU, which serves as the protein primer for
new RNA synthesis [28].

Interestingly, recent studies have shown that incubation
of VPg with NoV 3Dpol (RdRp) generates VPg-poly(U) and
that this uridylylated VPg can prime the replication of
polyadenylated RNA [29]. In contrast, replication of
antigenomic RNA was not primer dependent. Moreover,
on nonpolyadenylated RNA, NoV RdRp initiated RNA
synthesis de novo [29]. These findings clearly show that
initiation of replication of the NoV genome by the RpRp
requires a VPg-protein-primed initiation of replication of
polyadenylated genomic RNA and a de novo initiation of

http://www.biomedcentral.com/1756-0500/2/176

replication of antigenomic RNA [29]. Besides, very recent
studies revealed that the NoV RdRp is a typical template-
dependent RNA polymerase [30].

It is possible that the predicted stem-loop identified near
the 5' end of the NoV RdRp coding region, which share a
cre-like sequence motif with members of the family Picor-
naviridae [10], will be capable to perform the uridylylation
of VPg. If that is the case, this will permit VPg to act as a
primer for the synthesis of the minus strand RNA, in
agreement with the results outlined above [30].
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