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Abstract

Background: Inorganic polyphosphate (polyP), a polymer of tens or hundreds of phosphate
residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of
functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK| and
PPK2) and degraded by an exopolyphosphatase (PPX). Bacterial cells with polyP deficiencies are
impaired in many structural and important cellular functions such as motility, quorum sensing,
biofilm formation and virulence. Knockout mutants of the ppk/ gene have been the most frequent
strategy employed to generate polyP deficient cells.

Results: As an alternative method to construct polyP-deficient bacteria we developed constitutive
and regulated broad-host-range vectors for depleting the cellular polyP content. This was achieved
by the overexpression of yeast exopolyphosphatase (PPXI). Using this approach in a
polyphosphate accumulating bacteria (Pseudomonas sp. B4), we were able to eliminate most of the
cellular polyP (>95%). Furthermore, the effect of overexpression of PPX| resembled the functional
defects found in motility and biofilm formation in a ppkl mutant from Pseudomonas aeruginosa
PAOI. The plasmids constructed were also successfully replicated in other bacteria such as
Escherichia coli, Burkholderia and Salmonella.

Conclusion: To deplete polyP contents in bacteria broad-host-range expression vectors can be
used as an alternative and more efficient method compared with the deletion of ppk genes. It is of
great importance to understand why polyP deficiency affects vital cellular processes in bacteria. The
construction reported in this work will be of great relevance to study the role of polyP in
microorganisms with non-sequenced genomes or those in which orthologs to ppk genes have not
been identified.

Background are the polyphosphate kinases (PPKs) that catalyze the
Polyphosphate (polyP) is a ubiquitous linear polymer of  reversible conversion of the terminal phosphate of ATP
hundreds of orthophosphate residues (Pi) linked by  (or GTP) into polyP and the exopolyphosphatase (PPX)
"high-energy" phosphoanhydride bonds. The best-known  that processively hydrolyzes the terminal residues of
enzymes involved in the metabolism of polyP in bacteria ~ polyP to liberate Pi [1,2].
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The involvement of polyP in the regulation of both,
enzyme activities and the expression of large groups of
genes is the basis for the survival of different bacteria,
including pathogens, to stressing conditions and during
adaptation to the stationary phase of growth [2,3]. PPK1
knockout mutant cells lacking polyP survive poorly dur-
ing growth in the stationary phase and are less resistant to
heat, oxidants, osmotic challenge, antibiotics and UV [4-
8]. Important cellular process such as motility, quorum
sensing, biofilm development and virulence are also
affected [9-11]. In addition to homologues of PPK1,
another widely conserved polyP enzyme is PPK2 [12,13].
In contrast to the ATP-dependent polyP synthetic activity
of PPK1, PPK2 preferentially catalyses the opposite reac-
tion, i.e. poly P-driven synthesis of GTP from GDP.
Orthologs to both proteins have been found in many bac-
terial genomes. Some bacteria possess orthologs of either
PPK1 or PPK2, or both, or neither. For example, E. coli has
only PPK1 and Pseudomonas aeruginosa PAO1 contains
both. Interestingly, the enzyme in charge of polyP synthe-
sis still remains unknown in several bacteria containing
the biopolymer [13].

As a tool to remove cellular polyP content, we report here
the construction of expression vectors with constitutive
and regulated promoters that overexpress in bacteria the
yeast PPX1 fused to a hexa histidine-tag (6 Ht). Both, con-
stitutive and inducible expression of PPX1 removed
almost all cellular polyP (>96%) in polyP-accumulating
Pseudomonas sp. B4. The absence of the biopolymer was
confirmed by transmission electron microscopy (TEM)
and by quantification using a two-step method [14].
Recombinant polyP-deficient cells resembled ppkl
mutants of many bacteria in their functional defects
found in motility and biofilm formation. However, these
vectors have a greater advantage compared with previ-
ously described methods since they could be used in bac-
teria with unknown genome sequences or in those for
which ppk orthologs have not been found. Furthermore,
the regulated expression of PPX1 allowed us to induce
polyP deficiency when required. Importantly, the vectors
used in this work have been successfully replicated in
other bacteria from the Escherichia, Salmonella, Pseu-
domonas and Burkholderia genus demonstrating the wide
utility of this approach.

Results

Details about the construction of the constitutive and reg-
ulated expression vector and the verification of yeast PPX1
overexpression can be found in the Additional File 1 and
Figures 1 and 2.

Polyphosphate content in recombinant Pseudomonas sp.
B4 cells

Previous studies from our laboratory have shown that
Pseudomonas sp. B4 is a polyP-accumulating bacteria and
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in certain conditions polyP can be stored and observed as
electron dense granules by transmission electron micros-
copy (TEM) of unstained cells [15,16]. To determine
whether the overproduction of yeast PPX1 (Figures 1 and
2) affected the accumulation of polyP in the bacterium,
we monitored the levels of this biopolymer by observing
the presence of electron dense granules by TEM. Figure 3A
shows the results of quantification of the isolated polyP
from recombinant Pseudomonas sp. B4 cells in LB medium.
PolyP from arabinose induced regulated polyP(-)
(pBADPPX1) and constitutive polyP(-) (pS7PPX1) cells
was removed to barely detectable levels (around 2 pmoles
Pi/mg protein). The reduction of polyP levels (>96%) due
to PPX1 overproduction could be prevented in regulated
polyP(-) (pBADPPX1) cells to levels similar to those of the
control cells (pMLBAD and pMLS7) when growing in the
presence of 1% glucose.

PolyP in the form of electron dense granules can be seen
when Pseudomonas sp. B4 is grown in the presence of
biphenyl in minimal medium (M9) [15,16] (Figure 3B,
control). Nevertheless, these granules were not present in
constitutive polyP(-) (pS7PPX1) cells (Figure 3B). Quan-
tification of polyP in these samples confirmed the
removal of almost all cellular polyP (data not shown).
These findings clearly show that overexpression of PPX1 is
an excellent method to remove cellular polyP.

Functional analysis of constitutive and inducible polyP
deficient Pseudomonas sp. B4 cells

Among many functional and structural problems, P. aeru-
ginosa PAO1 ppk1 knockout mutants failed to develop bio-
films and were impaired in all forms of motility
(swimming, swarming, and twitching) [9-11,17]. To vali-
date our approach and check whether our transformants
resembled the functional deficiencies of ppk1 mutants, we
performed motility and biofilm assays in our strains with
depleted polyP levels. Wild type Pseudomonas sp. B4 is a
highly motile rod with a single polar flagellum and forms
widely spread colonies in LB plates [16]. However, the
form and size of the colonies varied notoriously in consti-
tutive polyP(-) cells, suggesting a motility defect (Figure
4A). This was confirmed by using semisolid agar plates
where cells were able to swim through water-filled chan-
nels to create concentric chemotactic rings (Figure 4B). As
reported for the P. aeruginosa PAO1 ppkl mutant, our con-
stitutive polyP(-) cells were impaired in swimming motil-
ity in semisolid agarose plates (Figure 4B) despite
possessing an apparently normal flagellum (Figure 3 for
flagellum detail). Curiously, the phenotype change seen
in Figure 4 is as drastic as that seen in a nonmotile strain
containing a knockout mutation in a flagellin structural
gene fliC and more severe than that observed in a ppk1l
mutant [9]. This suggests that the degree of lack of motil-
ity is related to the extent of polyP removed from the cell.
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Broad-host range constitutive (pS7TPPX1) and regulated (pBADPPXI1) expression vector maps to obtain polyP
deficient bacteria. Source of yeast DNA and primers used in plasmid construction were described in Methods. A detail
description of pMLBAD and pMLS7 plasmids can be found in reference [22].

Finally, we measured the capacity of our regulated polyP(-
) strains to attach and form biofilms on an abiotic surface
in a simple assay. As shown in Figure 5, polyP deficient
cells were able to form biofilm only when PPX1 expres-
sion was repressed in glucose. Just as in the case of the
ppkl mutants, our recombinant polyP(-) cells failed to
attach to the inert surface when growing in the presence of
arabinose (induction condition).

Discussion

The results from this study demonstrate the usefulness of
expression vectors for producing polyphosphate deficient
bacteria. As far as we know, this strategy was employed
only once in E. coli by using a very high copy number plas-
mid with a potent promoter [18]. Overexpression of
recombinant proteins from multiple-copy plasmids can
result in expression levels of up to 40% of the total cell
protein. However, in most cases, this results in the forma-
tion of insoluble protein aggregates known as inclusion
bodies, which may affect the activity of the expressed pro-
teins [19,20]. In our case, plasmids pMLS7 and pMLBAD

are derivatives of the pBBR1 plasmid [21], originally iso-
lated from Bordetella bronchiseptica, which is maintained at
around 20 to 30 copies per cell. This feature allowed us
both, to actively express yeast PPX1 and to avoid affecting
the general translation process in the host cell.

To our knowledge this is the first report of polyP-deficient
bacteria being generated by constitutive and regulated low
copy number vectors. The use of this approach allows the
researcher to avoid using knockout mutants, which is cur-
rently the most commonly used procedure to diminish
polyP content in bacteria. This is important for several rea-
sons. First, the generation of knockout mutants requires
the knowledge of the PPK sequence to be deleted and in
the cases of bacteria with unknown genome sequences,
this requires the isolation, cloning and sequencing of the
corresponding gene. Second, in many bacteria there is
more that one ppk gene responsible for polyP synthesis in
the cell [12,17]. As a consequence, to abolish most of the
polyP in these bacteria, more than one deletion would be
necessary. Finally, despite the presence of polyP, in many
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Constitutive (pS7PPX1) and regulated (pBADPPXI1) overexpression of yeast PPXI in Pseudomonas sp. B4 cells.
(A, B) Westtern-blotting using anti Hisé6t mAb and (C, D) thin layer chromatography (TLC) of exopolyphosphatase activity
products. (E) Phosphate (Pi) standard curve to determine exopolyphosphatase activity. Cells were from exponential (Ex) or

stationary (St) phases.

bacteria no ppk orthologs have been found in their
genomes. For this kind of bacteria our approach is the
only reliable method to generate polyP deficiency. Even
more, considering that the enzymes in charge of polyP
synthesis are still unknown in Archaea and Eukarya, over-
expression of PPX1 can be an effective method to produce
polyP scarcity in these domains of life. We have demon-
strated in this study that, regardless of the number of ppk
genes or their equivalents present in a genome, the over-

expression of yeast PPX1 eliminates almost all cellular
polyP contents.

Knockout mutants are very sable throughout generations
and one possible disadvantage of our method compared
to the deletion strategy could be the plasmid stability in
the transformants. Nevertheless, despite strain variations,
these plasmids remain relatively stable for a number of
generations in the absence of selection (88% in Burkholde-
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Figure 3

PolyP content in recombinant Pseudomonas sp. B4
cells. PolyP removal was checked by quantification of cellular
polyP (A) and by Transmission Electron Microscopy (TEM) of
unstained cells (B). Arrows indicate the cellular flagellum.
Error bars are the average of three determinations in three
biological replicates.

ria cepacia and 92% in Escherichia coli) [22]. In the case of
Pseudomonas sp. B4 plasmid stability was around 90%
(data not shown) but lower levels of stability might be
found in other strains depending on their expression lev-
els of Rep protein, some host-specific effects on plasmid
partition or due to incompatibility with indigenous plas-
mids.

Another important aspect of the present construction is
the use of a tag (His6t) that allows to follow up easily the
expression of PPX1 during the experiments.

We have also established that the arabinose-inducible/
glucose-repressible promoter permits to design experi-
ments where polyP can be depleted when required. This
approach will help to clarify the role of polyP in bacterial
pathogenesis and other important microbial functions.

Altogether, these results demonstrate that overexpression
of PPX1 generates functional defects similar to those pre-
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Control

Figure 4

Colony morphology and motility of constitutive
polyP deficient Pseudomonas sp. B4 cell. (A) Standard
LB plates and (B) motility assay plates of control and polyP
deficient Pseudomonas sp. B4 cells.

viously described in ppkl mutants. However, the use of
the new constructions reported here constitutes an advan-
tageous alternative method to study polyP deficiency in
bacteria possessing more than one ppk gene or in those in
which the enzymatic activity synthesizing polyP is
unknown.

Conclusion

PolyP has numerous and varied biological functions that
have been discovered mainly by studying its deficiency in
bacteria. To better understand the function of polyP is
necessary then to have simple approaches to eliminate
this biopolymer in the cell. In this study we developed
broad-host-range constitutive and regulated vectors that
deplete cellular polyP. We conclude that these vectors will
function as suitable and efficient genetic systems for char-
acterizing polyP deficiency in bacteria, especially in those
microorganisms with unknown genome sequences.

Methods

Bacterial strains, genomic DNA, plasmids and growth
conditions

Bacterial strains and plasmids used in this study are listed
in Table 1. Escherichia coli and Pseudomonas sp. B4 strains
and their derivative strains were grown aerobically at
37°C on Luria-Bertani (LB) rich medium. Trimetropim
(50 pg/ml) was added when required. E. coli was cultured
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Biofilm formation assays in regulated polyP-deficient
Pseudomonas sp. B4 cells. (A) Crystal Violet stained PVC
plates of polyP-deficient Pseudomonas sp. B4 cells under
repressed (Glucose 1%) and induced (Arabinose 0,5%,) con-
ditions. (B) Quantification of crystal violet dye attached to
the cells forming biofilms on PVC plates. Error bars are the
average of two determinations in four biological replicates.

in Luria-Bertani medium or on Luria-Bertani (LB) agar
plates at 37°C. For the expression experiments the LB
medium was supplemented with 1% (w/v) glucose or
0.1%-0.5% (w/v) arabinose as required. Genomic DNA
from Saccharomyces cerevisiae W303 was used to amplify
the PPX1 gene.

Table I: Strains and plasmids used in this study

http://www.biomedcentral.com/1756-0500/2/50

Polyphosphate methods

PolyP quantification. Purified recombinant His6-PPK was
prepared by using E. coli strain NR 100 as described previ-
ously [23,24] and this preparation was used in the polyP
assay described below. The protein concentration was
determined by the method of Bradford (Coomassie Plus
protein Assay, Pierce). PolyP was quantified by using a
two-step conversion of polyP into ATP by PPK and quan-
tification of ATP by using luciferase to generate light
[14,25]. PolyP was extracted from small pellet cells by
using Glassmilk. The resulting PolyP was assayed by using
the reverse reaction of E. coli PPK in ADP excess. Finally,
the ATP generated was determined by using the luciferase
(Boehringer Mannheim) reaction, and the luminescence
was measured with a luminometer (BioScan Lumi/96).
Concentration of polyP was expressed in terms of Pi resi-
dues.

Assay for PPX activity and TLC analysis of the reaction prod-
ucts. First, radioactively labelled polyP with a chain length
of 750 residues was prepared as previously described [14].
The identity and purity were determined by its susceptibil-
ity to hydrolysis by PPX1.

PPX activity was determined as previously described [26],
with the following modifications. A 50 pl reaction mix-
ture contained 50 mM Tris/acetate (pH 7.0), 1 mM
MnCl,, 100 mM KCl, 50 pg extract protein and 250 pM
[33P] polyP750. Reactions were stopped after incubation
of the mixtures for 60 min at 65°C. After this, 4 ul was
taken from each reaction mixture and loaded on polyeth-
yleneimine-cellulose plates (Merck). For TLC, samples of
4 pl were separated in 0.75 M KH,PO, (pH 3.5). Radioac-
tive spots were visualized and quantified by using a Phos-
phorimager (Molecular Imager FX Systems, Bio-Rad).
One unit of enzyme was defined as the amount releasing
1 pmol of phosphate from polyP min-!.

More details about the Methods employed in this work
were included in the Additional File 1.

Strains Characteristics Reference
Pseudomonas sp. B4 constitutive polyP(-) Pseudomonas sp. B4 transfomant with pS7PPX1 plasmid This study
Pseudomonas sp. B4 constitutive control Pseudomonas sp. B4 transfomant with This study
pMLS7 plasmid
Pseudomonas sp. B4 regulated polyP(-) Pseudomonas sp. B4 transfomant with pBADPPX| plasmid This study
Pseudomonas sp. B4 regulated control Pseudomonas sp. B4 transfomant with pMLBAD plasmid This study
Escherichia coli NR 100 MI15 (pREP) derivative with pQE30PPK plasmid [24]
Plasmids
pGEM®-T-easy T-vector cloning system Promega
pMLBAD Broad-host range regulated expression vector [22]
pMLS7 Broad-host range constitutive expression vector [22]
pTYPPXI pGEM®-T-easy with PPX| gene from S. cerevisiae. (Hisé tag) This study
pS7PPXI pMLS7 with PPX| gene from S. cerevisiae. (Hisé tag) This study
pBADPPX pMLBAD with PPX| gene from S. cerevisiae. (Hisé tag) This study
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