
TECHNICAL NOTE Open Access

Effects of gene therapy on muscle 18S rRNA
expression in mouse model of ALS
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Abstract

Background: The efficiency of gene therapy experiments is frequently evaluated by measuring the impact of the
treatment on the expression of genes of interest by quantitative real time PCR (qRT-PCR) and by normalizing these
values to those of housekeeping (HK) genes constitutively expressed throughout the experiment. The objective of
this work was to study the effects of muscle gene therapy on the expression of 18 S ribosomal RNA (Rn18S),
a commonly used HK gene.

Findings: Mouse model of motor neuron disease (SOD1-G93A) was injected intramuscularly with Brain-derived
neurotrophic factor (BDNF-TTC) encoding or control naked DNA plasmids. qRT-PCR expression analysis was
performed for BDNF and HK genes Rn18 S, glyceraldehyde-3-phosphate dehydrogenase (Gapdh) and b-actin (Actb).
We report that elevated BDNF expression in the injected muscle was accompanied with increased Rn18 S
expression, whereas Gapdh and Actb were not affected. Increased “ribosomal output” upon BDNF stimulation was
supported by increased steady-state levels of ribosomal protein mRNAs.

Conclusions: Ribosomal RNA transcription may be directly stimulated by administration of trophic factors. Caution
should be taken in using Rn18 S as a HK gene in experiments where muscle metabolism is likely to be altered by
therapeutic intervention.

Background
Quantitative Real Time PCR (qRT-PCR) is an increas-
ingly popular method for the quantitative analysis of
gene expression. Despite its high sensitivity, accuracy and
wide dynamic range that favour qRT-PCR in gene
expression studies, some factors exist that must be taken
into account as a possible source of error [1]. A critical
element in experimental design is the strategy to quantify
the input template cDNA in the sample. Appropriate
choice of internal references has been previously shown
to be crucial for correct interpretation of expression data
[1,2] and bioinformatic approaches have been developed
to increase the accuracy of normalization [3-5]. Although
numerous reference genes are currently used for normal-
ization purposes, the most commonly used are still 18 S
ribosomal RNA (Rn18S), b-actin (Actb) and glyceralde-
hyde-3-phosphate dehydrogenase (Gapdh) due to their
ubiquitous and relatively high expression levels [6]. Actb
and Gapdh are mRNA-encoding housekeeping genes

(HKs), and have been claimed to be either suitable or
unsuitable as reference genes depending on tissue or
experimental conditions used [6-10]. On the other hand,
Rn18 S encodes ribosomal RNA (rRNA). Although
rRNAs are highly abundant and, therefore, untypical
RNA-species in the cell, Rn18 S has been described to
maintain stability under some conditions that may result
in altered housekeeping mRNA levels [7]. Rn18 S has
been regarded as appropriate endogenous control in
experiments including cell culture [11,12] and tissue
biopsies [13].
In metabolically active cells rRNA genes are tran-

scribed efficiently to keep up with high demand for pro-
tein synthesis machinery. Traditional northern RNA
quantification has favoured Rn18 S because of its conve-
niently high expression level which can dramatically
reduce the time required for the autoradiographic detec-
tion. However, when qRT-PCR with relative quantifica-
tion is used, high abundance of Rn18 S compared with
target mRNA transcript becomes a hindrance as it com-
plicates accurate subtraction of the baseline value in real-
time qRT-PCR data analysis [5]. As opposed to mRNA
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genes (such as Actb and Gapdh) that are transcribed by
RNA polymerase II (Pol II), rRNA transcription is depen-
dent on RNA polymerase I (Pol I) devoted exclusively to
this task. Pol I activity is a crucial determinant for pro-
duction of ribosomes needed for growth and cell prolif-
eration [14,15]. Potential differences between regulatory
networks modifying transcriptional activity of Pol I and
Pol II is a major criticism for using rRNA genes for nor-
malization. Availability of extracellular stimulatory
factors (such as nutrition or growth factors), intracellular
conditions (such as mutations), and drugs may alter
mRNA and rRNA pools in dissimilar manner, or even to
opposite directions [16,17]. Indeed, the hallmark of can-
cer is augmented rRNA transcription [18] and Rn18 S
normalization has been shown to be potentially con-
founding in gene expression analysis of rat mammary
tumors [19]. Pol I is a known target for growth-
promoting signals such as epidermal growth factor [15]
and insulin-like growth factor 1 [20]. This may well influ-
ence rRNA expression levels in cells where exogenous
genes have been introduced to provide gene therapy,
especially when introduced molecule stimulates anabolic
pathways of the target cells.
Amyotrophic lateral sclerosis (ALS) is a devastating

adult-onset motor neuron disease characterized by a
progressive degeneration of motor neurons, skeletal
muscle atrophy, paralysis and death. A well described
mouse model of ALS, an overexpresser of human super-
oxide dismutase 1 (SOD1) carrying glycine to alanine
substitution at residue 93 (SOD1-G93A) [21], recapitu-
lates many features observed in human patients. Our
previous work has established that the symptoms of the
disease in this model can be alleviated with intramuscu-
lar injection of either recombinant proteins or “naked
DNA” plasmids encoding neurotrophic factors, such as
Glial cell-derived neurotrophic factor (GDNF) [22] or
Brain-derived neurotrophic factor (BDNF) [23], coupled
with atoxic C-terminal fragment of tetanus toxin (TTC)
to enhance retrograde transport from muscle to neurons
[24]. Besides delaying a functional decline and lethality
of SOD1-G93A mice, these therapies activate Akt kinase
by increasing PI3K-dependent signalling that promotes
growth and survival [22].
The aim of the present study was to evaluate the effect

of an exogenous BDNF-TTC fusion construct expression
in vivo on the levels of Actb, Gapdh and Rn18 S in trans-
fected tissue and, therefore, validation of these HK genes
as an endogenous reference in such gene therapy studies.

Results and discussion
Briefly, BDNF-TTC-encoding (pcDNA3.1-pCMV-BDNF-
TTC) or non-coding control (pcDNA3.1-pCMV) naked
DNA plasmids were each injected intramuscularly into
the quadriceps of ten SOD1G93A transgenic mice at 60

days of age (asymptomatic stage). Each muscle was
injected with total 100 μg of plasmid in physiological
saline, in two 50 μL injections. Ten days or fifty days
after injections (at ages of 70 days and 110 days, respec-
tively) the animals were anaesthetized with pentobarbital
(50 mg/kg) and sacrificed by cervical dislocation. Quad-
riceps muscles were snap-frozen in liquid nitrogen and
stored at -70°C. All experimental procedures were
approved by Ethics Committee of our institution and
followed the international guidelines for the use of
laboratory animals. For gene expression analysis, total
RNA extracted from frozen muscle tissue of each animal
was DNase treated and retrotranscribed, and the cDNA
was used for the expression analysis of plasmid-derived
BDNF (BDNF-TTC) as well as that of HK genes Rn18S,
Gapdh and Actb (see full details in additional file 1).
Relative expression levels of BDNF and Rn18 S were
normalized with the geometric mean of those of Actb
and Gapdh [5]. For the expression stability analysis of
Actb and Gapdh, the transcripts were normalized with
each other. Relative gene expression compared with
control plasmid-injected animals was determined using
the 2-ΔΔCT method [25]. Student’s t-test was used and
statistical differences were considered significant at P ≤
0.05 (Statistica 5.0).
At day 10 post-injection there were no significant dif-

ferences in the expression of BDNF between animals
treated with pcDNA3.1-pCMV-BDNF-TTC plasmid and
those treated with pcDNA3.1-pCMV control vector
(Figure 1A, left). Accordingly, we did not find significant
differences in the Rn18 S gene expression between these
groups (Figure 1B, left). By contrast, 50 days post-injec-
tion the expression of BDNF was 2.4-fold higher in
pcDNA3.1-pCMV-BDNF-TTC treated animals (p <
0.01), which correlated with a 1.8-fold increase in the
transcripts of Rn18 S gene (p < 0.01) (Figures 1A and
1B, right). On the other hand, neither Actb nor Gapdh
showed significant differences between control and
pcDNA3.1-pCMV-BDNF-TTC treated animal groups at
70 or 110 days of age (Figures 1C and 1D). These obser-
vations are consistent with a previously described role of
BDNF in upregulating Pol II-dependent (mRNA) com-
ponents of the translation machinery [26], and possibly
indicate also increased Pol I transcriptional activity in
the treated muscle in response to BDNF. Although the
observed 1.8-fold upregulation of Rn18 S upon BDNF-
TTC treatment may seem small compared with changes
often reported to mRNA genes, this degree of Pol I
transcriptional activation has been described in growth
factor-stimulated cells [15,20]. Since transcription of
rRNA genes utilizes as much as 40-50% of the transcrip-
tional capacity in mammalian cells [27], even two-fold
relative increase in Rn18 S transcripts is significant in
absolute quantities.
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To further investigate if the observed Rn18 S increase
upon BDNF-treatment reflects a general increase in
ribosomal output we compared the expression of four
“muscle enriched” [28] ribosomal protein mRNAs (two
from small 40 S subunit and two from large 60 S subu-
nit) using the same cDNA samples. The steady state
mRNA levels of Rps13, Rps17, Rpl41 and Rpl44 (also
known as Rpl36a) showed 7-17-fold increase in BDNF-
treated compared with control plasmid treated muscles
(Figure 2). Wheather this increase reflects increased Pol
II transcription, increased mRNA stability, or both,
remains unknown. However, these results are consistent
with general induction of the translation machinery by
BDNF [26].
Increasing evidence indicates involvement of rRNA

suppression during pathogenesis of motor neuron dis-
ease. rRNA synthesis takes place in the nucleoli, which
are the sites of ribosome biogenesis in the eukaryotic
cells, and perturbation of nucleolar function leads to
neurodegeneration in mice [29]. Haploinsufficiency of
angiogenin (ANG) has been linked to the pathogenesis

of ALS, and ANG is known to stimulate rRNA tran-
scription by direct transcriptional regulation as well as
to activate synthesis of ribosomal proteins by stimula-
tion of Akt/PI3K survival pathway [30]. We propose
that the increase in the Rn18 S transcript levels reflects
a stimulus of the translation machinery occurring in the
muscles and/or neuromuscular junctions of the BDNF-
TTC treated SOD1-G93A animals. BDNF treatment can
activate Akt/PI3K [22] and ERK1/2 [31] signalling path-
ways, which are, respectively, required for stimulation of
Pol I-dependent rRNA transcription upon IGF-1 trea-
ment [20] and EGF treament [15]. BDNF has been
recently shown to potentiate in vivo muscle regeneration
after toxin-induced damage, and this activity may derive
from its stimulatory effect on function of muscle stem
cells, satellite cells [32]. Although we did not specifically
study satellite cells here, it seems possible that cell cycle
activation in this normally quiescent supply of muscle
progenitors may at least partially contribute to the
observed induction in Rn18S. Indeed, transcription of
both rRNA [33] and ribosomal protein mRNAs [34] is

Figure 1 Up-regulation of Rn18 S upon BDNF-treatment. Gene expression analysis in muscle tissue of SOD1-G93A animals intramuscularly
injected with pcDNA3.1-CMV control plasmid (dark grey bars) or pcDNA3.1-CMV-BDNF-TTC plasmid (light grey bars) at ten days (age 70 days) or
fifty days (age 110 days) post-injection. A) BDNF expression is unchanged (P = 0.258) at age of 70 days but shows 2.4-fold increase (P = 0.007) in
therapeutically treated animals at age of 110 days. B) Rn18 S expression is not altered at age of 70 days (P = 0.298) but is 1.8-fold higher (P =
0.009) at age of 110 days. C) Actb and D) Gapdh expression is unaltered in all conditions (P > 0.05). Error bars indicate standard error of mean.
Symbol ** denotes statistical significance level P ≤ 0.01.
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increased in proliferating myoblasts compared with
mature myofibers. Our results are also in agreement
with those reported earlier [35] where considerable var-
iation in Rn18 S expression in skeletal muscle was
observed in response to intense exercise which is known
to activate metabolism and differentiation status of myo-
genic and mature muscular cells.

Discrepancies exist about the utility of Rn18 S in nor-
malization in other types of cells. In activated lympho-
cytes Rn18 S transcript levels remain relatively stable
compared to unstimulated ones [36]. Similarly, constitu-
tive expression of Rn18 S was described in myeloid leu-
kaemia cell lines when stimulated to differentiate
although, upon stimulation of apoptosis using the same

Figure 2 Up-regulation of ribosomal protein mRNAs upon BDNF-treatment. Gene expression analysis was carried out as in Figure 1.
pcDNA3.1-CMV control plasmid -treated muscles are shown as dark grey bars and pcDNA3.1-CMV-BDNF-TTC plasmid treated muscles as light
grey bars. A) Transcripts for ribosomal proteins Rps13, Rps17, Rpl41 and Rpl44 were unaffected (P = 0.854, P = 0.472, P = 0.735 and P = 0.522,
respectively) by BDNF-treatment at age of 70 days. B) Transcripts for ribosomal proteins were increased by BDNF-treatment at age of 110 days:
Rps13 (8.6 fold, P < 0.01), Rps17 (13.1-fold, P < 0.01), Rpl41 (17.4-fold, P < 0.01) and Rpl44 (7.1-fold, P < 0.05). Error bars indicate standard error of
mean. Symbols ** and * denote statistical significance level P ≤ 0.01 and P ≤ 0.05, respectively.
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cell lines, Rn18 S was found to be unreliable reference
gene [37]. Thus, it seems that the usefulness of Rn18 S
for normalization purposes depends on both cell type
and experimental intervention that tissue is subjected to.
However, as discussed earlier, Pol I and Pol II transcrip-
tion are subjects to differential regulation, which is the
primary concern in using rRNAs for mRNA normaliza-
tion. Data presented here and by others [35] indicate
instability of Rn18 S under two conditions that stimulate
muscle cell activity, namely gene therapy and exercise.
Therefore, qRT-PCR data normalization using Rn18 S in
muscle tissue under regenerative treatment or exercise
is clearly not recommended.
Molecules that provide trophic support to the atrophic

muscle are under vigorous investigation since they are
predicted to be beneficial in patients suffering from
muscular or neuromuscular diseases, and may improve
the recovery from traumatic damage [38,39]. Therefore,
poor performance of Rn18 S as a HK gene needs a spe-
cial recognition in the regenerative therapy field, and
the same may well apply to the mRNAs encoding com-
ponents of the translation machinery. On the positive
note, the results presented here potentially reveal the
utility of increased Rn18 S transcript levels as a surro-
gate marker to measure the effectiveness of therapeutic
interventions in muscular and neuromuscular diseases.

Additional material

Additional file 1: Methodological details. A detailed description of
animal housing, RNA extraction, retrotranscription and quantitative real
time PCR analysis.
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