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Abstract

Background: Management of emerging infectious diseases such as the 2009 influenza pandemic A (H1N1) poses
great challenges for real-time mathematical modeling of disease transmission due to limited information on
disease natural history and epidemiology, stochastic variation in the course of epidemics, and changing case
definitions and surveillance practices.

Findings: The Richards model and its variants are used to fit the cumulative epidemic curve for laboratory-
confirmed pandemic H1N1 (pH1N1) infections in Canada, made available by the Public Health Agency of Canada
(PHAC). The model is used to obtain estimates for turning points in the initial outbreak, the basic reproductive
number (R0), and for expected final outbreak size in the absence of interventions. Confirmed case data were used
to construct a best-fit 2-phase model with three turning points. R0 was estimated to be 1.30 (95% CI 1.12-1.47) for
the first phase (April 1 to May 4) and 1.35 (95% CI 1.16-1.54) for the second phase (May 4 to June 19).
Hospitalization data were also used to fit a 1-phase model with R0 = 1.35 (1.20-1.49) and a single turning point of
June 11.

Conclusions: Application of the Richards model to Canadian pH1N1 data shows that detection of turning points is
affected by the quality of data available at the time of data usage. Using a Richards model, robust estimates of R0
were obtained approximately one month after the initial outbreak in the case of 2009 A (H1N1) in Canada.

Background
Epidemics and outbreaks caused by emerging infectious
diseases continue to challenge medical and public health
authorities. Outbreak and epidemic control requires swift
action, but real-time identification and characterization
of epidemics remains difficult [1]. Methods are needed to
inform real-time decision making through rapid charac-
terization of disease epidemiology, prediction of short-
term disease trends, and evaluation of the projected
impacts of different intervention measures. Real-time
mathematical modeling and epidemiological analysis are
important tools for such endeavors, but the limited pub-
lic availability of information on outbreak epidemiology
(particularly when the outbreak creates a crisis environ-
ment), and on the characteristics of any novel pathogen,

present obstacles to the creation of reliable and credible
models during a public health emergency. One needs to
look no further than the 2003 SARS outbreak, or ongoing
concerns related to highly pathogenic avian influenza
(H5N1) or bioterrorism to be reminded of the need for
and difficulty of real-time modeling.
The emergence of a novel pandemic strain of influenza

A (H1N1) (pH1N1) in spring 2009 highlighted these dif-
ficulties. Early models of 2009 pH1N1 transmission were
subject to substantial uncertainties regarding all aspects
of this outbreak, resulting in uncertainty in judging the
pandemic potential of the virus and the implementation
of reactive public health responses in individual countries
(Fraser et al. [2]). Multiple introductions of a novel virus
into the community early in the outbreak could further
distort disease epidemiology by creating fluctuations in
incidence that are misattributed to the behavior of a sin-
gle chain of transmission.
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We sought to address three critical issues in real time
disease modeling for newly emerged 2009 pH1N1: (i) to
estimate the basic reproduction number; (ii) to identify
the main turning points in the epidemic curve that dis-
tinguish different phases or waves of disease; and (iii) to
predict the future course of events, including the final
size of the outbreak in the absence of intervention. We
make use of a simple mathematical model, namely the
Richards model, to illustrate the usefulness of near real-
time modeling in extracting valuable information
regarding the outbreak directly from publicly available
epidemic curves. We also provide caveats regarding
inherent limitations to modeling with incomplete epide-
miological data.
The accuracy of any modeling is highly dependent on

the epidemiological characteristics of the outbreak con-
sidered, and most epidemic curves exhibit multiple turn-
ing points (peaks and valleys) during the early stage of
an outbreak. While these may be due to stochastic
("random”) variations in disease spread, and changes in
either surveillance methods or case definitions, turning
points may also represent time points where epidemics
transition from exponential growth processes to pro-
cesses that have declining rates of growth, and thus may
identify effects of disease control programs, peaks of
seasonal waves of infection, or natural slowing of growth
due to infection of a critical fraction of susceptible indi-
viduals. For every epidemic, there is a suitable time
point after which a given phase of an outbreak can be
suitably modeled, and beyond which subsequent phases
may be anticipated. Detection of such “turning points”
and identification of different phases or waves of an out-
break is of critical importance in designing and evaluat-
ing different intervention strategies.

Methods
Richards [3] proposed the following model to study the
growth of biological populations, where C(t) is the cumu-
lative number of cases reported at time t (in weeks):

′ = −C t rC t
C

K
a( ) ( )[ ( ) ].1

Here the prime “′” denotes the rate of change with
respect to time. The model parameter K is the maxi-
mum case number (or final outbreak size) over a single
phase of outbreak, r is the per capita growth rate of the
infected population, and a is the exponent of deviation.
The solution of the Richards model can be explicitly
given in terms of model parameters as
C t K e r t t am( ) [ ]( ) /= + − − −1 1 , and the parameter tm is

related to the turning point ti of the epidemic (or the
inflection point of the cumulative case curve) by the

simple formula tm = ti + (lna)/n where ln denotes the
natural logarithm. Using the Richard model, we are able
to directly fit empirical data from a cumulative epidemic
curve to obtain estimates of epidemiological meaningful
parameters, including the growth rate r.
In such a model formulation, the basic reproduction

number R0 is given by the formula R0 = exp(rT) where
T is the disease generation time defined as the average
time interval from infection of an individual to infection
of his or her contacts. It has been shown mathematically
[4] that, given the growth rate r, the equation R0 = exp(rT)
provides the upper bound of the basic reproduction
number regardless of the distribution of the generation
interval used, assuming there is little pre-existing immu-
nity to the pathogen under consideration. Additional
technical details regarding the Richards model can be
found in [5-7].
Unlike the better-known deterministic compartmental

models used to describe disease transmission dynamics,
the Richards model considers only the cumulative
infected population size. This population size is assumed
to have saturation in growth as the outbreak progresses,
and this saturation can be caused by immunity, by
implementation of control measures or other factors
such as environmental or social changes (e.g., children
departing from schools for summer holiday). The basic
premise of the Richards model is that the incidence
curve of a single phase of a given epidemic consists of a
single peak of high incidence, resulting in an S-shaped
cumulative epidemic curve with a single turning point
for the outbreak. The turning point or inflection point,
defined as the time when the rate of case accumulation
changes from increasing to decreasing (or vice versa)
can be easily pinpointed as the point where the rate of
change transitions from positive to negative; i.e., the
moment at which the trajectory begins to decline. This
time point has obvious epidemiologic importance, indi-
cating either the beginning of a new epidemic phase or
the peak of the current epidemic phase.
For epidemics with two or more phases, a variation of

the S-shaped Richards model has been proposed [6].
This multi-staged Richards model distinguishes between
two types of turning points: the initial S curve which
signifies the first turning point that ends initial exponen-
tial growth; and a second type of turning point in the
epidemic curve where the growth rate of the number of
cumulative cases begins to increase again, signifying the
beginning of the next epidemic phase. This variant of
Richards model provides a systematic method of deter-
mining whether an outbreak is single- or multi-phase in
nature, and can be used to distinguish true turning
points from peaks and valleys resulting from random
variability in case counts. More details on application of
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the multi-staged Richards model to SARS can be found
in [6,7]. Readers are also referred to [8,9] for its applica-
tions to dengue.
We fit both the single- and multi-phase Richards

models to Canadian cumulative 2009 pH1N1 cumulative
case data, using publicly available disease onset dates
obtained from the Public Health Agency of Canada
(PHAC) website [10,11]. PHAC data represent a central
repository for influenza case reports provided by each of
Canada’s provinces and territories. Onset dates repre-
sent best local estimates, and may be obtained differ-
ently in different jurisdictions. For example, the
province of Ontario, which comprises approximately 1/3
of the population of Canada, and where most spring
influenza activity was concentrated, replaces onset dates
using a hierarchical schema, whereby missing onset
dates may be replaced with dates of specimen collection
(if known) or date of specimen receipt by the provincial
laboratory system, if both dates of onset and specimen
collection are missing.
Data were accessed at different time points during the

course of the “spring wave (or herald wave)” of the epi-
demic in May-July of 2009, whenever a new dataset is
made available online by the PHAC. By sequentially con-
sidering successive S-shaped segments of the epidemic
curve, we estimate the maximum case number (K) and
locate turning points, thus generating estimates for cumu-
lative case numbers during each phase of the outbreak.
The PHAC cumulative case data is then fitted to the
cumulative case function C(t) in the Richards model with
the initial time t0 = 0 being the date when the first labora-
tory confirmed case was reported and the initial case num-
ber C0 = C(0) = 1, (the case number with onset of
symptoms on that day). There were some differences
between sequential epidemic curves in assigned case dates.
For example, data posted by PHAC on May 20 indicated
an initial case date of April 13, but in the June 3 data this
had been changed to April 12, perhaps due to revision of
the case date as a result of additional information.
Model parameter estimates based on the explicit solu-

tion given earlier can be obtained easily and efficiently
using any standard software with a least-squares approx-
imation tool, such as SAS or Matlab.
Daily incidence data by onset date were posted by

PHAC until June 26, after which date only the daily
number of laboratory-confirmed hospitalized cases in
Canada was posted. For the purpose of comparison, we
also fit the hospitalization data to the Richards model in
order to evaluate temporal changes in the number of
severe (hospitalized) cases, which are assumed to be
approximately proportional to the total cases number.
The case and hospitalization data used in this work are
provided online as Additional file 1.

Results
We fit the model to the daily datasets, acquired in real
time, throughout the period under study. The least-
squared approximation of the model parameter estima-
tion could converge for either the single-phased or the
2-phase Richards models. For the sake of brevity, only
four of these model fits are presented in Table 1 to
demonstrate the difference in modeling results over
time. The resulting parameter estimates with 95% confi-
dence intervals (CI) (for turning point (ti), growth rate
(r), and maximum case number (K)), time period
included in the model, and time period when the data
set in question were accessed, is presented in Table 1.
Note that all dates in the tables are given by month/day.
We also note that the CI’s for R0 reflect the uncertainty
in T as well as in the estimates for r, and does not
reflect the error due to the model itself, which is always
difficult to measure.
In order to compare the 1-phase and 2-phase models,

we also calculate the Akaike information criterion (AIC)
[12] for the first, third, and fourth sets of data in Table
1, where there is a model fit for the 2-phase model. The
results, given in Table 2, indicates that whenever there
is a model fit for the 2-phase model, its AIC value is
always lower than that of the 1-phase model and hence
compares favorably to the 1-phase model.
Parameter estimates fluctuate in early datasets, and the

least-squared parameter estimations diverge within and
between 1-phase and 2-phase models in a manner that
seems likely to reflect artifact. In particular, for the ear-
liest model fits, using data from April 13 to May 15, the
estimated reproductive number for the second phase is
far larger than that obtained in the first phase, and that
obtained using a single-phase model, and illustrating the
pitfalls of model estimation using the limited data avail-
able early in an epidemic. Estimates stabilize as the out-
break progresses, as can be seen with the final data sets
(April 11 to June 5 and April 12 to June 19). For compar-
ison, we plot the respective theoretical epidemic curves
based on the Richards model with the estimated para-
meters described in the table above in Figure 1.
As noted above, model can be used to estimate turn-

ing points (ti) and basic reproductive numbers (R0.), if
the generation time T is know. We used T = 1.91 days
(95% CI: 1.30-2.71), as obtained in [2] by fitting an age
stratified mathematical model to the first recognized
2009 influenza A (H1N1) outbreak in La Gloria, Mexico.
Estimates are presented in Table 1. We also conducted
sensitivity analyses with R0

# calculated based on longer
generation times (T = 3.6 (2.9, 4.3)) for seasonal influ-
enza in [13] (see last column in Table 1). Excluding
implausibly high estimates of R0 generated using initial
outbreak data (April 13 to May 15), we obtain the
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estimates of R0 for the 2-phase model that range
between 1.31 and 1.96.
Inasmuch as Richards model analyzes the general

trends of an epidemic (e.g., turning point, reproductive
number, etc.), it can be used to fit any epidemiological
time series for a given disease process, as long as the
rate of change in the recorded outcome is proportional
to changes in the true number of cases. As such, for
comparison, we fit our model using the time series for
2009 pH1N1 hospitalizations in Canada posted by
PHAC on July 15 [11] (that last date these data were
made available) (Table 3). This time series was easily fit
to a one-phase model (Figure 2). Further examples of
using hospitalization or mortality data to fit the Richards
model can be found in [14].

Discussion and Conclusions
We used the Richards model, which permits estimation
of key epidemiological parameters based on cumulative
case counts, to study the initial wave of 2009 influenza A
(H1N1) cases in Canada. In most model fits, April 28-29
and May 4-7 were identified as early turning points for

the outbreak, with a third and final turning point around
June 3-5 in models based on longer time series. Although
this modeling approach was not able to detect turning
points using some earlier data sets (e.g., those limited to
the period from April 12 to May 27), in general the turn-
ing points identified were consistent across multiple
models and time series. Perhaps the most important
divergence between models occurred with the detection
of an April 29 turning point in the case report time ser-
ies, but not in the time series based on hospitalized cases.
We believe this may be attributable to the small number
of hospitalizations, relative to cases, that had occurred by
that date, as well as the fact that hospitalization data only
became available on April 18.
The turning point can correspond to the point at which

disease control activities take effect (such that the rate of
change in epidemic growth begins to decline) or can
represent the point at which an epidemic begins to wane
naturally (for example, due to seasonal shifts or due to
the epidemic having “exhausted” the supply of suscepti-
bles such that the reproductive number of the epidemic
declines below 1). This quantity has direct policy rele-
vance; for example, in the autumn 2009 pH1N1 wave in
Canada, vaccination for pH1N1 was initiated at or after
the turning point of the autumn wave due to the time
taken to produce vaccine; as the epidemic was in natural
decline at that point, the impact of vaccination has subse-
quently been called into question.
Although the Richards model is able to capture the

temporal changes in epidemic dynamics over the course
of an outbreak, it does not define their biological or epi-
demiological basis. As such, determining the nature of
these turning points requires knowledge of “events on
the ground” for correlation. We suspect that the last

Table 1 Estimation results for Richards model parameters for various time periods of Canadian daily laboratory-
confirmed pandemic H1N1 virus data by onset date

Time period (date posted) Model duration Turning point ti (95% CI) Growth rate r (95% CI) Turning point ti R0 (95% CI) R0
#(95% CI)

4/13-5/15 (5/20) 4/13-5/6 14.70
(0.32, 29.09)

0.14
(0.12, 0.17)

4/28 1.32
(1.17, 1.46)

1.68
(1.45, 1.91)

5/6-5/15 1.59
(0*, 4)

0.66
(0.57, 0.74)

5/8 3.49
(1.80, 5.19)

10.57
(4.79, 16.36)

4/12-5/27 (6/3) 4/12-5/27 25.70
(20.67, 30.73)

0.13
(0.10, 0.16)

5/8 1.28
(1.14, 1.42)

1.60
(1.37, 1.82)

4/11-6/5 (6/10) 4/11-5/6 17.84
(6.72, 28.97)

0.14
(0.11, 0.17)

4/29 1.30
(1.16, 1.45)

1.64
(1.40, 1.88)

5/6-6/5 15.14
(0*, 93.02)

0.09
(0.06, 0.11)

5/22 1.18
(1.09, 1.27)

1.37
(1.22, 1.52)

4/12-6/19 (6/26) 4/12-5/4 16.85
(0*, 49.04)

0.14
(0.09, 0.19)

4/29 1.30
(1.12, 1.47)

1.63
(1.31, 1.96)

5/4-6/19 31.15
(28.83, 33.47)

0.13
(0.11, 0.16)

6/4 1.29
(1.15, 1.53)

1.62
(1.40, 1.84)

*max(0, lower bound).

Note that all dates in the tables are given by month/day. Dates of posting are listed in parentheses. Model duration indicates whether they fit a 1-phase or 2-
phase model. Note that the maximum case number is rounded off to the nearest integer. R0

# is obtained using the generation interval of T = 3.6 (2.9, 4.3) for
seasonal influenza [13].

Table 2 Comparison of Akaike information criterion (AIC)
values between 1-phase and 2-phase models for time
periods with 2-phase model fit in Table 1

Time period (date posted) Model AIC

4/13-5/15 (5/20)
1-phase 352

2-phase 163

4/11-6/5 (6/10)
1-phase 589

2-phase 499

4/12-6/19 (6/26)
1-phase 1286

2-phase 771
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identified turning point (in early June) occurred in rela-
tion to intensifying requests by the Ontario Public Health
Laboratory that clinicians stop routine virological testing
of all individuals with respiratory illness, as well as the
dismissal of schools in June. With respect to the lag
between final turning points using a 2-phase model for
case data (June 4) (Table 1, last line) and a 1-phase
model using hospitalization data (June 11), this lag in
turning points would actually be expected, due to the
time from initial onset of symptoms until hospitalization,
which was reported to have an interquartile range of 2-7
days in a recent study from Canada [15]. Timelines for
the 2-phase model for case data of 4/12-6/19 and the
1-phase model for hospitalization data are presented
graphically in Figure 3.
In addition to identifying turning points, the Richards

model is useful for estimation of the basic reproductive
number (R0) for an epidemic process, and our estimates
derived using a Richards model were consistent with
estimates derived using other methods. For example,
our R0 agrees almost perfectly with that of Tuite et al.,
derived using a Markov chain Monte Carlo simulation
parameterized with individual-level data from Ontario’s

public health surveillance system [16]. Our estimates of
R0 is smaller than that derived by Fraser et al. [2] using
Mexican data, but such differences could relate in part
to the different age distributions of these two countries
[17], and may also reflect the fact that our estimate is
obtained Canadian data at a national level, while empiri-
cal Mexican estimates were based on data from the
town of La Gloria with only 1575 residents.
Most epidemic curves in the early stage of a novel dis-

ease outbreak have multiple phases or waves due to sim-
ple stochastic ("random”) variation, mechanisms of
disease importing, initial transmission networks and indi-
vidual/community behavior changes, improvements in
the performance of surveillance systems, or changes in
case definitions as the outbreak response evolves. How-
ever, changes in phase (signified by the presence of turn-
ing points identified using the Richards model) may also
pinpoint the timing of important changes in disease
dynamics, such as effective control of the epidemic via
vaccination or other control measures, depletion of dis-
ease-susceptible individuals (such that the effective
reproductive number for the disease decreases to < 1), or
the peak of a “seasonal” wave of infection, as occurs with

Figure 1 The 2-phase Richards model for the initial phase of the influenza A (H1N1) 2009 in Canada, using daily incidence data by
onset date between April 11-June 19 and posted by PHAC on June 26.

Table 3 Comparison of estimation results of the model parameters for the 1-phase Richards model using daily
laboratory-confirmed pandemic H1N1 virus hospitalization data

Time period of data (date posted) Estimated turning point ti R0 (95% CI) R0
# (95% CI)

4/18-7/6 (7/15) June 11 1.35 (1.20, 1.49) 1.75 (1.55, 1.95)
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both seasonal and pandemic influenza. One of the advan-
tages of the Richards model for real-time modeling is
that it offers a simple means of fitting a model to cumu-
lative case counts, which smoothes out stochastic varia-
tions in the epidemic curve.
While there are numerous published methodologies

in addition to the Richards model that can be used to

estimate R0 [4,18,19], some competing methods require
more extensive and detailed data than are required to
build a Richards model, which requires only cumulative
case data from an epidemic curve. As we also demonstrate
here, the Richards model produces fairly stable and cred-
ible estimates of reproductive numbers early in the out-
break, allowing these estimates to inform evolving disease

Figure 2 The 2-phase Richards model for laboratory-confirmed pandemic influenza A H1N1 2009 cases hospitalized in Canada during
April 18-July 6 and posted by Public Health Agency of Canada on 15 July 2009.

Figure 3 Timelines of the 2-phase Richards model using case data of April 12-June 19 and the 1-phase model using hospitalization
data.
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control strategies. For example, the first estimates in
Table 1, derived using early case data accessed on May 20,
closely approximate our final estimates (Table 1, last row).
Thus, while early estimation with the Richards model
failed to correctly detect turning points or accurately esti-
mate the final outbreak size, it was nonetheless useful for
rapid estimation of R0 within a month of first case occur-
rence in Canada.
As with any mathematical modeling technique, the

approach presented here is subject to limitations, which
include data quality associated with real-time modeling (as
data are often subject to ongoing cleaning, correction, and
reclassification of onset dates as further data become avail-
able), reporting delays, and problems related to missing
data (which may be non-random). In our current study,
the hierarchical approach used by Canada’s most populous
province (Ontario) for replacement of missing data could
have had distorting effects on measured disease epidemiol-
ogy: the replacement of missing onset dates with dates of
specimen collection could have resulted in the artifactual
appearance of early turning points identified by our
model, due to limitations in weekend staffing early in the
outbreak. If, as we believe to be the case, public health
laboratories did not have sufficient emergency staffing to
keep up with testing on weekends such that weekend spe-
cimen log-ins declined sharply, this would have created
the appearance of epidemic “fade out” on weekends. Other
factors that might distort the apparent epidemiology of
disease include changes in guidelines for laboratory testing
of suspected cases, improved surveillance and public
health alerts at later stages of the outbreak leading to
increased case ascertainment or over-reporting of cases
[20]. However, the quality of the time series will tend to
improve with the duration of the epidemic, both because
stochastic variation is “smoothed out”, and also because
small variations become less important as the cumulative
series becomes longer. We note that a further application
of the Richards model in the context of influenza would
relate to comparison of the epidemiology of the 2009
influenza A H1N1 epidemic to past Canadian epidemics,
though such an endeavor is beyond the scope of the pre-
sent study.
In summary, we believe that the Richards model pro-

vides an important tool for rapid epidemic modeling in
the face of a public health crisis. However, predictions
based on the Richards model (and all other mathemati-
cal models) should be interpreted with caution early in
an epidemic, when one need to balance urgency with
sound modeling. At their worst, hasty predictions are
not only unhelpful, but can mislead public health
officials, adversely influence public sentiments and
responses, undermine the perceived credibility of future
(more accurate) models, and become a hindrance to
intervention and control efforts in general.

Additional material

Additional file 1: Electronic Supplementary Material. 2009 Canada
novel Influenza A(H1N1) daily laboratory-confirmed pandemic H1N1 case
and hospitalization data.
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