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Abstract

Background: Falls are a major source of morbidity and mortality among older adults. Unfortunately, self-report is,
to a large degree, the gold-standard method for characterizing and quantifying fall frequency. A number of studies
have demonstrated that near falls predict falls and that near falls may occur more frequently than falls. These
studies suggest that near falls might be an appropriate fall risk measure. However, to date, such investigations have
also relied on self-report. The purpose of the present study was to develop a method for automatic detection of
near falls, potentially a sensitive, objectivemarker of fall risk and to demonstrate the ability to detect near falls using
this approach.

Findings: 15 healthy subjects wore a tri-axial accelerometer on the pelvis as they walked on a treadmill under
different conditions. Near falls were induced by placing obstacles on the treadmill and were defined using
observational analysis. Acceleration-derived parameters were examined as potential indicators of near falls, alone
and in various combinations. 21 near falls were observed and compared to 668 “non-near falls” segments,
consisting of normal and abnormal (but not near falls) gait. The best single method was based on the maximum
peak-to-peak vertical acceleration derivative, with detection rates better than 85% sensitivity and specificity.

Conclusions: These findings suggest that tri-axial accelerometers may be used to successfully distinguish near falls
from other gait patterns observed in the gait laboratory and may have the potential for improving the objective
evaluation of fall risk, perhaps both in the lab and in at home-settings.

Background
Falls are a significant cause of morbidity and mortality,
especially among older adults and many patient popula-
tions [1]. In June of 2009, research on falls among the
elderly was listed as the 3rd item in the top priority
group in the Institute of Medicine’s report to Congress
on national priorities for the United States [2]. Much
effort has been devoted to the development of methods
for evaluating fall risk [3-6], but the most common
means of quantifying falls remains self-report. Despite
its widespread use, this method has three key limita-
tions: 1) it is subjective in nature, relying on subjects’
motivation and memory (which can be problematic in
its own right), 2) it requires a long observation period
(e.g., typically six months or more), and 3) sensitivity
may be lacking (e.g., subjects are typically classified as
fallers and non-fallers, but the absence of a more refined

scale may limit sensitivity and the ability to evaluate
intervention efficacy).
Different techniques have been developed to automati-

cally identify falls and related measures with varying
degrees of success using sensors embedded in the home
environment or body-fixed sensors [7-9]. Body-worn
fall-detection systems are intended for long-term, auto-
mated detection of activity, in general, and falls, more
specifically [5,10-16]. For example, methods based on
accelerometry have been proposed as being suitable for
the detection of falls in ambulatory subjects
[5,7,14,17-19]. These methods have been developed as
part of alarm and similar warning systems in order to
automatically identify an older adult who has experi-
enced a fall and is in need of immediate assistance. This
approach is appropriate for alarm and related applica-
tions and has, indeed, been used successfully for these
purposes and for the assessment of activity. It is, none-
theless, important to keep in mind that a community-
living older adult typically falls less than two times per
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year [20] and that falls, at least among the healthy
elderly, are relatively rare events, albeit with very signifi-
cant consequences. Thus, continuous monitoring of falls
using body-fixed sensors would generally require very
long periods of observation (e.g., half a year) to capture
a fall incident, minimizing the practicality and feasibility
of using this approach to quantify fall risk by measuring
actual falls.
We hypothesized that methods based on body-fixed

sensors could, however, be adapted to identify missteps
or near falls, potentially enhancing the utility of an
approach for assessing fall risk. Missteps and near falls
are used here synonymously as a stumble or loss of bal-
ance that would result in a fall if sufficient recovery
mechanisms were not activated [21]. Automatic identifi-
cation of near falls should, a priori, provide objective
quantification of a sensitive marker of fall risk, perhaps
over a shorter observation time periods. Indeed, a num-
ber of studies have found that near falls based on self-
report are related to fall risk [21-27], that near falls are
more frequent than falls [21-23,25,27,28], and that near
falls may occur before falls [23-25], enhancing the
potential predictive value of near falls. These properties
indicate that near falls are clinically relevant markers of
falls worthy of further study. Objective techniques for
quantifying these events are, however, lacking [21]. The
primary aim of the present study was to begin to
develop and assess signal processing methods for detect-
ing nearfalls using body-fixed sensors.

Methods
Subjects
Young adults (n = 10; ages: 22-28 yrs, 4 males) and
older adults (n = 5; ages: 63-77 yrs, 3 males) participated
in this study. Subjects in both groups were healthy and
had no gait disturbances. Subjects were excluded if they
had any disability likely to impair gait or balance, cogni-
tive decline, or dementia (Mini Mental State Exam
score<24). The research carried out on humans was in
compliance with the Helsinki Declaration and the study
protocol was approved by Human Studies Committee of
the Tel Aviv Sourasky Medical Center. All subjects pro-
vided informed written consent.

Procedures
Subjects walked on a medical treadmill equipped with a
safety harness to prevent actual falls (see Figure 1) at
three different paces (i.e., self-selected slow, normal and
fast). At each pace, subjects walked for 2 minutes with-
out obstacles and 2 minutes with obstacles, randomly
placed in the subject’s path every few seconds, but not
in the line of vision, to induce near falls. Obstacles
included empty shoeboxes (30 cm × 20 cm × 12 cm),
shoeboxes filled with stones, empty carbon cylinder rolls

(90 cm height and 8 cm diameter), and ropes. A sheet
was placed just in front of the subject, between the sub-
ject’s face and the floor, to hide the presence of the
obstacles from the subject’s view of the floor and the
obstacles placed on the treadmill. Thus, the subjects
could not see the obstacles. Observational analyses were
used to define near falls (a loss of balance that would
have resulted in a fall if corrective measures were not
taken). Other gait irregularities included stepping over
or kicking obstacles were not defined as a near fall. The
decision to annotate a given segment as a near fall (or
not) was made in real-time by an observer, without
knowledge of the accelerometer data (i.e., blinded to this
data). A DynaPort® MiniMod portable tri-axial acceler-
ometer (McRoberts, The Hague, NL) was worn on the
lower back to measure the vertical, anterior-posterior
and medio-lateral accelerations (see Figure 2). The
accelerometer range was ± 2 g and its sampling fre-
quency was 100 Hz.

Data Analysis
The data was processed using Matlab (the MathWorks
Inc). All gait intervals were divided into 5 second, non-
overlapping segments. The normal gait segments were
compared to the “near fall” segments. Acceleration-axis
calibration was performed, as described previously [10],
in order to correct for possible axis-tilt due to the orien-
tation of the device on the subject or due to lower back
tilt of the subject. The acceleration axes were calibra-
tedto match the orthogonal axes. Afterwards, the ante-
rior-posterior acceleration was low passed filtered
(a 1 Hz cutoff frequency FIR filter was used). Step cycles
were defined as the zero crossings of the filtered signal
[29] and the intervals between each two successive steps
determined the step cycle time series.
For each 5 second gait segment, the signal vector

magnitude (SVM),

SVM x g zi i i  2 2 2

and the Normalized Signal Magnitude Area (SMA),
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t
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where x,y,z are the 3 axes of acceleration, were deter-
mined [11] and thresholds were used to define a near
fall. The SVM provides a measure of the degree of
movement intensity [11]. Other derived parameters
included the acceleration derivative (jolt), maximum
acceleration amplitude (Max), the maximum accelera-
tion derivative (Maxdiff), the maximum peak-to-peak
acceleration amplitude (Maxp2p) and the maximum
peak-to-peak acceleration derivative (Maxp2pdiff),
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Figure 1 The setup used to assess near falls. The medical treadmill and harness used are shown along with the sensors used. A 3D
accelerometer is located on the lower back and held in place by the large belt shown.
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defined as the difference between the maximum and
minimum acceleration derivatives (see, for example, Fig-
ure 3). The standard deviation of the signal in each gait
interval was also determined. In addition, step regularity,
stride regularity, and symmetry were calculated, as pre-
viously described [30].
Algorithm Assessment
For each gait parameter, the best threshold for distin-
guishing between normal gait segments (i.e., epochs) and
near falls was determined by plotting a range of possible
thresholds using a Receiver Operating Characteristic
curve, ROC, and choosing the threshold with the best
specificity and sensitivity values, i.e., the ones closest to
the (0,1) point. The algorithm performance was exam-
ined for each parameter separately and for two or three
parameter combinations. For the multiple parameter
combinations, we checked detection performance when
all parameters were above a certain threshold, i.e., the
“and” state, and when at least one parameter was above a
certain threshold, i.e., the “or” state. Performance was
expressed by means of sensitivity and specificity.

Results
Overall, we observed 592 normal segments, 21 near falls,
18 stops, 30 step-overs (stepping over obstacles), and 28
kicks. All of the acceleration derived measures showed
higher values during a near fall (e.g., see Figure 3). The
best single parameter indicator for a near fall was the
vertical maxp2pdiff: it achieved a sensitivity of 85.7%
and specificity of 88.0% for identifying near falls. Other
measures were also fairly successful at identifying near
falls (see Table 1). The best 2-parameter indicator for a
near fall was the “and” combination of the vertical
maxp2pdiff along with the vertical maximum: sensitivity
of 85.7% and specificity of 90.1% (see Table 2). Results
were slightly better when extracting all the irregular
intervals (e.g., kicks/stops/step-overs) from the “normal”
group (data not shown).

Discussion
The results of the present study demonstrate that a sin-
gle accelerometer may be placed on the trunk of an
individual to automatically distinguish near falls from

Figure 2 The accelerometer used in the present study. A DynaPort portable tri-axial accelerometer (McRoberts, The Hague, NL) was placed
on the lower back to measure accelerations, the input to the near falls algorithms.
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other stepping patterns, with reasonable sensitivity and
specificity. Interim analysis of a follow-up study among
elderly fallers and non-fallers who walked over-ground
also support the idea that these objectively identified
near falls are more common among older adults with a
history of falling, consistent with the results of self-report
studies of near falls [21-28]. Taken together, these

findings suggest that perhaps long-term recordings and
measurement of near falls, as subjects carry out activities
of daily living, is likely to be a clinically relevant, objective
adjunct measure of fall risk, possibly improving sensitiv-
ity and reducing the observation time required.
This preliminary study has several limitations.

Ongoing studies are designed to examine how the

Figure 3 Acceleration derived signals during 3 near falls, as labeled, and during other gait intervals. A-C) Derivatives in three axes.
D) Signal Vector Magnitude, calculated as the root of the square sums of the 3 axes acceleration signals, E) Vertical Maximal acceleration.
F) Vertical maximum peak-to-peak acceleration derivative. All signals display indications of the near falls.
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Table 1 Sensitivity and specificity for detecting near falls using single parameters

Parameter axis NOT
Near Fall mean

Near Fall mean NOT
Near Fall

SD

Near Fall
SD

threshold Sensitivity (%) Specificity (%) Detection (%)**

Max* V 0.45 0.83 0.20 0.30 0.56 90.48 81.89 20.46

Max M-L 0.31 0.60 0.16 0.26 0.41 71.43 86.38 31.65

Max A-P 0.33 0.48 0.17 0.22 0.38 52.38 73.80 54.35

Maxdiff V 0.17 0.37 0.09 0.15 0.21 80.95 80.99 26.91

Maxdiff M-L 0.15 0.36 0.10 0.26 0.17 76.19 75.60 34.09

Maxdiff A-P 0.19 0.41 0.19 0.24 0.24 76.19 82.34 29.64

maxp2p V 0.71 1.40 0.29 0.53 0.88 90.48 80.39 21.80

maxp2p M-L 0.63 1.35 0.30 0.67 0.80 80.95 83.53 25.18

maxp2p A-P 0.75 1.38 0.43 0.57 0.93 76.19 82.93 29.30

maxp2pdiff V 0.34 0.69 0.19 0.26 0.48 85.71 88.02 18.65

maxp2pdiff M-L 0.30 0.72 0.20 0.52 0.35 80.95 76.95 29.90

maxp2pdiff A-P 0.42 0.86 0.36 0.48 0.52 80.95 81.59 26.49

Std V 0.13 0.19 0.06 0.05 0.16 61.90 74.55 45.82

Std M-L 0.11 0.16 0.04 0.05 0.13 66.67 79.94 38.90

Std A-P 0.13 0.17 0.05 0.04 0.15 61.90 79.34 43.34

Step regularity V 0.58 0.32 0.17 0.12 0.27 71.43 5.99 98.26

Stride regularity V 0.54 0.27 0.16 0.15 0.22 61.90 5.69 101.72

Symmetry V 1.13 1.36 0.39 0.57 1.24 61.90 79.79 43.13

The sensitivity and specificity values obtained for detecting near falls (n = 21) as compared to non-near falls (n = 668) using single parameters. Non-near falls
included regular gait intervals combined with the irregular (non-near falls) intervals (e.g., kicks, stepovers, stops).

*Max = maximum acceleration amplitude; Maxdiff = maximum acceleration derivative; Maxp2p = maximum peak-to-peak acceleration amplitude; Maxp2pdiff =
maximum peak-to-peak acceleration derivative; Std = standard deviation; V: vertical; M-L: medio-lateral; A-P: anterior-posterior.

** The detection % is the distance from the ideal ROC curve (the lower, the better).

Table 2 Sensitivity and specificity for detecting near falls using multiple parameters

Parameters* State Sensitivity (%) Specificity (%) Detection (%)**

Max-V, Maxp2pdiff-V and 85.71 90.12 17.37

[Max-V, Maxp2p-V, Maxp2pdiff-V and 85.71 90.12 17.37

Maxp2p-V, Maxp2pdiff-V and 85.71 89.37 17.81

[Max-V, Maxp2p-V and 90.48 84.13 18.51

Max-M-L, Maxp2pdiff-V or 90.48 81.74 20.59

Maxp2p-M-L, Maxp2pdiff-V or 95.24 79.49 21.06

Max-V, Maxdiff-V, Maxp2pdiff-V and 80.95 90.42 21.32

Maxdiff-V, Maxp2p-V, Maxp2pdiff-V and 80.95 89.82 21.60

Maxp2pdiff-V, Maxp2pDiff-A-P or 95.24 78.74 21.79

Maxdiff-A-P, Maxp2pdiff-V or 95.24 78.59 21.93

The sensitivity and specificity values obtained for detecting near falls (n = 21) as compared to non-near falls (n = 668) using multi-parameter combinations Non-
near falls included regular gait intervals combined with the irregular, non-near falls intervals (e.g., kicks, stepovers, stops).

*The parameter combinations for the algorithm’s detection criterion included single parameters, and multiple parameters. For the multiple parameter
combinations, we checked the case of passing the detection criterion for all parameters (state “and”), versus passing the detection criterion for at least one
parameter (state “or”).

Max = maximum acceleration amplitude; Maxdiff = maximum acceleration derivative; Maxp2p = maximum peak-to-peak acceleration amplitude; Maxp2pdiff =
maximum peak-to-peak acceleration derivative; Std = standard deviation; V: vertical; M-L: medio-lateral; A-P: anterior-posterior.

**The detection% is the distance from the ideal roc curve (the lower, the better). For brevity, the results are shown for only the best 10 combinations.
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developed algorithms work in real-world conditions and
to evaluate the predictive value of acceleration-derived
measures of near falls in different control and patient
populations (e.g., patients with neurodegenerative dis-
ease) and in aging (e.g., young vs. older adults). Normal
balance responses may have been altered and restricted
by the treadmill setup (e.g., the treadmill provides bars
for support and promotes continuous walking). In this
initial study, we focused on the identification of near
falls, but made no attempt at differentiating between the
loss of balance and the recovery. Theoretically, these are
two distinct processes. In this work, we aimed to iden-
tify the “stumble” or near fall. It is, however, possible
that some of the recovery phase may have been identi-
fied, although most of the derived parameters that had
good success in identifying these events are, at least
intuitively, more likely related to the loss of balance
than to the recovery process. Further work is also
needed to verify that the developed algorithms are suc-
cessful at identifying near falls in normal and free walk-
ing environments. There are some subtle differences
between over-ground walking and treadmill walking
and, as a result, the accelerometer signal is not identical
in both conditions. However, even on a treadmill, the
signals from all three axes have a form that is similar to
over-ground walking, supporting the idea that over-
ground near falls can also be detected using the algo-
rithms described.
Despite these and other limitations, the initial results

reported here motivate continued work along these
lines, provide a basis for future studies in both in the
lab and at-home settings, and suggest that a tri-axial
accelerometer can successfully identify near falls and
may also have the potential for improving the objective
evaluation of fall risk.
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