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Abstract

biomarkers.

predominantly by improving precision.

Background: microRNAs (miRNA) are short, endogenous transcripts that negatively regulate the expression of
specific MRNA targets. The relative abundance of miRNAs is linked to function in vivo and miRNA expression
patterns are potentially useful signatures for the development of diagnostic, prognostic and therapeutic

Finding: We compared the performance characteristics of four commercial miRNA array technologies and found
that all platforms performed well in separate measures of performance.

Conclusions: The Ambion and Agilent platforms were more accurate, whereas the lllumina and Exiqon platforms
were more specific. Furthermore, the data analysis approach had a large impact on the performance,

Findings

MicroRNAs (miRNAs) are endogenous, non-coding
transcripts that regulate a diverse range of functions,
including development, differentiation, growth, apoptosis
and metabolism. These 17-24 nucleotide RNA molecules
confer specific recognition of target mRNAs and modu-
late gene expression by acting in conjunction with a set
of effector proteins of the RNA interference pathway
[1,2]. Through this interaction, miRNAs negatively regu-
late expression of specific target mRNAs by inhibiting
translation, sequestering transcripts in P-bodies [3], or
by accelerating mRNA decay as a consequence of rapid
deadenylation [4]. Moreover, miRNAs have recently
been proposed to activate translation of mRNAs under
certain conditions [5].

The relative abundance of miRNAs in cells is thought
to be important for miRNAs to exert their regulatory
function. For example, titrated expression of both geno-
mic copies of mouse miR-1 is required for normal heart
formation and function during embryogenesis [6]. Aber-
rant miRNA expression contributes to malignancies,
tumor progression and metastasis (reviewed in [7]), and
miRNA expression profiles can be correlated with dis-
ease pathogenesis and prognosis [8,9]. Thus, the
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performance characteristics of technologies that measure
the relative abundance of miRNAs is important for
effectively deciphering their functional roles and their
potential utility as diagnostic biomarkers.

Microarray technology permits simultaneous expres-
sion measurements for hundreds of miRNAs. This tech-
nology is already widely used and promises to become a
standard tool in the near future. However, a careful
assessment of the technology has not yet been per-
formed. This motivated us to evaluate performance
attributes of four commercial array platforms for
miRNA expression profiling. The miRNA platforms
evaluated were Ambion (miRChip; a custom Affymetrix
array provided as the DiscovArray™ service through
Asuragen,), Agilent (Human miRNA Microarray, v 1.0,
GEO accession GPL9081), Exiqon (miRCURY™ LNA
Array, v 9.2, GEO accession GPL7724), and Illumina
(MicroRNA Expression Profiling Panels, v 1, GEO acces-
sion GPL8178). In all cases the sample processing was
performed by experienced operators working under
standard operating procedures. Samples for three of the
four platforms were processed by companies that pro-
vide research services on the platform. The study was
administered by BIOO Scientific Corporation (Austin,
TX) to ensure that the sample identities and purpose of
the experiment was blinded. With the exception of the
[llumina platform, the laboratory personnel did not
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know the experiment was part of a performance evalua-
tion. Illumina’s Sentrix® Universal-16 BeadChip arrays
were used for this study instead of the Sentrix® Array
Matrix, which is the manufacturers supported platform
for miRNA analysis of the version 1 bead pool.

Seven synthetic miRNAs [Additional file 1] were
spiked into a background of 100 ng human placenta
total RNA at known input masses ranging from 1 amol
to 316 amol in serial 3.16-fold increments. Seven pools
of synthetic miRNAs were formulated for spiking
according to a 7 x 7 Latin Square design, such that each
transcript is spiked in at each concentration (including a
zero mass negative control). Endogenous levels of the
seven synthetic miRNAs were below the detection
threshold when placenta RNA was screened on the
Ambion platform. The 100 ng input of total RNA was
within the vendors’ recommended ranges of inputs.
There were substantial differences between platforms in
the coverage of miRNAs represented. To eliminate
potential probe-content biases in the assessment of pre-
cision, we restricted the analysis to 330 human miRNAs
represented on all four platforms, representing 45% of
the 733 mature human miRNAs registered in the Sanger
10.1 sequence database [10].

Each company provided processed data as part of the
standard service using statistical methods produced in
house. We refer to these as the default data sets. They
are available for download through the NCBI Gene
Expression Omnibus (GEO) repository under the follow-
ing accessions: GSE19248. The Exiqon default data
reported the value “NA” (missing values) for 51% of the
measurements associated with the spiked-in miRNAs,
and 59.1% of the 330. We were, therefore, unable to
analyze the Exiqon default data by the methods
described, and it was not included in this report. In
gene expression microarrays various academic groups
have demonstrated that the use of alternative statistical
methodology can substantially improve accuracy and
precision of expression measurements, relative to ad-hoc
procedures developed by the manufacturers of the tech-
nology [11]. We therefore also used the raw probe-level
data from all companies, with the exception of Agilent.
The Agilent miRNA platform typically interrogates
repeated measurements of two probes per miRNA that
are summarized using a proprietary algorithm. There-
fore, Agilent does not recommend using raw probe-level
data for data analysis or normalization. We compared
two alternative approaches to background correction to
the default: no-background correction and exponential-
normal convolution [11]. We also compared quantile
normalization [12] to the default normalization method
for each platform. We refer to the processed data (in
log, scale) as expression values. We found that no-back-
ground correction and quantile normalization clearly
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outperformed other approaches, so we used these meth-
ods to compare platform performance. For Agilent we
used the default dataset according to the vendor’s
recommendations. Figures using the default dataset for
all platforms are included as Additional files 2, 3, 4.

We assessed specificity and sensitivity in a way that
can be easily related to practical performance. The use
of the same placental total RNA as background material
in each hybridization permitted us to assess specificity.
Spike-in experiments have been used extensively to
assess gene expression technologies as they provide a
sensible way of measuring sensitivity [13,14]. However,
misleading conclusions can be drawn from experiments
with unusually high expression measurements for the
spike-in concentrations that presumably do not repre-
sent the nominal concentrations of the background
RNA [15]. For this reason, we carefully calibrated our
spike-in material to assure that the distribution of
observed expression for the spike-in transcripts reflects
the distributions seen in typical experiments. Additional
file 2 shows the typical distribution of expression values
for the background RNA for the four studied data sets.
The tick marks on the x-axis represent the average
expression at each reported spike-in level. This figure
illustrates that the spike-in transcripts resulted in
expression measurements similar to the background
RNA transcripts.

We adapted statistical assessments that have been suc-
cessfully implemented for gene expression arrays [16].
We start with a basic assessment of accuracy: the signal
detection slope [16]. Microarray expression values intend
to measure the abundance of sample RNA. Therefore
we expect that a doubling of nominal concentration
would result in a doubling of observed intensities. In
other words, on the log (base,) scale, the slope from the
regression of expression on nominal concentration can
be interpreted as the expected observed difference when
the true difference is a fold change of 2. Thus, an opti-
mal result is a slope of one and values higher and lower
than one are associated with over and under estimation,
respectively. Figure 1 demonstrates that Ambion per-
formed best in the assessment of accuracy. The lower
accuracy of the Exiqon platform can be attributed to
poor dose-responsiveness at the low-mass inputs. This
apparent reduced sensitivity at low mass input is consis-
tent with a relatively high proportion of non-detected
probes (59.1%) that were reported in the default data
set. The expression signals corresponding to one spiked
miRNA on the Illumina array were high and correlated
poorly with the input doses (See Figure 1). Removing
this aberrant probe produced a relative accuracy slope
of 0.65, in contrast to 0.56 reported in Table 1. The
inconsistent performance of one probe corresponding to
one of the spiked-in transcripts may indicate a
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Figure 1 Observed versus nominal values: For each of the four platforms, expression values of spiked miRNAs are plotted against the log
(base,) of the reported nominal concentration. The regression line and slope are shown.
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selectivity bias with the underlying probe design or
labeling assay. This possibility was not addressed with
this experimental design.

Specificity is another important feature of array-based
platform performance. Because the majority of microar-
ray studies rely on relative measures (e.g. fold change)
as opposed to absolute ones, we focused on the preci-
sion of the basic unit of relative expression: log-ratios.
We adapted the precision assessment of Cope et al. [16]
that focused on the variability of log-ratios generated by
comparisons expected to produce log-ratios of 0. This

was achieved by using comparisons within the back-
ground RNA. We refer to this group of comparisons as
the Null set. The standard deviation (SD) of these log-
ratios serves as a basic assessment of precision and has
a useful interpretation: it is the expected range of
observed log-ratios for genes that are not differentially
expressed. In gene expression arrays, specificity perfor-
mance has been shown to vary with nominal concentra-
tions [17]. We therefore plotted the log-ratios against
the average expression value for each comparison or
MA-plots. Figure 2 combines the results from all pair-
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Table 1 Assessment results:

Platform Preprocessing Slope (SD) SD 99% SNR TOP NA%
lllumina  ON 056 (1.02) 015 088 373 038 0
Exigon QN 052 (075 014 098 371 027 0
Ambion  ON 097 (0.75) 027 191 359 017 0
Agilent Default 2(066) 032 191 350 011 1463
lllumina  BGC & ON 1(1.11) 018 145 339 022 0
lllumina  Default 060 (1.15) 024 255 25 004 489
Ambion  BGC & ON 1.20 (155 055 402 218 003 O
Exigon BGC & ON 102 (1.02) 047 297 217 003 O
Ambion  Default 2(1.34) 055 392 204 002 0

For each platform, we report summary assessments for accuracy, precision,
and overall performance. The first column shows the signal detection slope
which can be interpreted as the expected observed difference when the true
difference is a fold change of 2. In parenthesis is the standard deviation of
the log-ratios associated with non-zero nominal log-ratios. The second column
shows the standard deviation (SD) of the log-ratio null distribution. The SD
can be interpreted as the expected range of observed log-ratios for genes
that are not differentially expressed. The third column shows the 99th
percentile of this null distribution. It can be interpreted as the expected
minimum value that the top 1% of non-differentially expressed miRNA will
reach. The fourth column shows the ratio of the values in column 1 and
column 2. It is a rough measure of signal to noise ratio. The fifth column
shows the probability that, when comparing two samples, a gene with true
log fold change of 2 will appear in a list of the top 1% genes with the highest
log-ratios. The sixth column shows the percentage of negative values in the
default data set.

wise comparisons of the seven arrays and includes the
values obtained for the transcripts spiked in with nom-
inal log-ratios of 1.66, the smallest nominal value pro-
duced by our design. To avoid plotting thousands of
points on top of each other we use a two dimensional
density plot: color intensity represents the frequency of
observations at each point (darker = higher frequency).
Fold-change values from null set larger than 2 are con-
sidered false positives and are shown with blue squares.
The results for the spike-in transcripts are shown with
orange triangles. A platform that performs well should
show clear separation between the null set and the
spiked-in set: the orange triangles should separate from
the blue regions and we should see no blue squares. Fig-
ure 2 highlights two important findings: 1) Precision
depends on concentration with higher variability
observed for low concentrations. 2) Illumina and Exi-
qon, which had the worst accuracy, have the best preci-
sion. The overall separation was slightly better for the
methods with better precision. The MA plots for the
default data analysis [Additional file 3] demonstrate
increased variance compared to no-background correc-
tion/quantile normalization. The gains in accuracy are
not enough to overcome the reduced ability to discrimi-
nate signal from noise.

Note that in that in Figure 2, many dark blue dots
were observed on each platform. This was expected
given the documented problem of cross-hybridization.
Because a platform with larger SD and small outliers
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might be preferable to one with a smaller SD but large
outliers we included the 99" percentile of the null dis-
tribution as a second summary assessment of specificity.
Note that for this analysis 3.3 is the expected 1% value
for the 330 human mature miRNAs common to all plat-
forms. However, the number of array features will cer-
tainly increase in the near future: the number of false
positives (in the top 1%) will increase proportionally.

Precision and accuracy assessments, considered inde-
pendently, have limited practical use. However, the sum-
mary statistics described above can be easily combined
to answer many practical questions when posed in a sta-
tistical context. As an example, we computed the chance
that, when comparing two samples, a gene with true
log, fold change, A = 1, will appear in a list of the top
1% (highest log-ratios). This summary statistic, as well
as the accuracy and precision summaries described
above are shown in Table 1. Note that Table 1 includes
results for all the data analysis approaches we
considered.

We have described an assessment procedure for
microRNA microarray data based on a carefully
designed spike-in experiments. Strengths and weak-
nesses were revealed for each platform. Ambion and
Agilent were more accurate, while, Illumina and Exiqon
were more specific. Strikingly, the data processing meth-
ods had a more profound impact on the performance
than were observed for differences between platforms.
The introduction of background correction adjustment
to the raw data was detrimental to specificity, inferring
that background correction was the likely cause of lower
performance for the three default data sets. The practi-
cal implication is that false positive fold changes are
most likely to be detected at lower expression signals
from default data, and may be reduced by eliminating
the background correction from the raw data.

We considered quantile normalization to be the best
approach among multiple options for this study design
because the distribution of the background RNA is iden-
tical across the project. For projects where the miRNA
fraction of total RNA may be variable across different
samples in the project, another normalization method
may be more appropriate.

The experimental design did not include measure-
ments of day-to-day or site-to-site variability to evaluate
platform robustness, so we were not able to draw direct
conclusions as to whether these platforms might have
performed differently under different circumstances.
Reproducibility testing of the Agilent, Ambion and Illu-
mina platforms beyond the scope of this study suggested
that the performance reported here is within the
expected day-to-day variability (not shown).

Both Ambion and Agilent demonstrated good accu-
racy across the range tested but with less precision than
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Figure 2 MA plots: For each platform, we performed all pair-wise comparisons of the seven arrays. From each comparison we computed the
log-ratio (M) and average expression value (A) for each miRNA feature. These plots show M plotted against A. To avoid drawing hundreds of
points on top of each other we use a smooth scatter plot which shows the distribution of these points: dark and light shades of blue show high
and low frequency of points, respectively. The points associated with spike-in transcripts with nominal fold changes of 3.16 are shown as orange
triangles. Points associated with larger nominal fold changes are not shown since they were very easy to detect for all platforms. Points not
associated with the spike-in transcripts (should have M = 0) that achieved fold changes above 2 are shown as large blue squares.

the other two platforms. Agilent performed the best
when only the default data set was evaluated for each
platform. Considering that we adhered to Agilent’s gui-
dance to use the default data, further analysis is required
to determine whether excluding the background adjust-
ment or including a global normalization method can
improve the performance of the Agilent array.

Additional file 1: Supplementary Table S1. Spike-in sequence

Additional file 2: Supplementary Figure S1 - Empirical densities:
These plots depict the empirical density of the average (across arrays)
expression values for the background RNA, including quantile normalized
raw data (A) and default data (B). The tick marks on the x-axis show the
average expression at each nominal spike concentration.

Additional file 3: Supplementary Figure S2. As Figure 2 but using the
default preprocessing procedures.

Additional file 4: Supplementary Figure S3. As Figure 1 but using the
default preprocessing procedures.
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