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Abstract

Background: The “off-target” silencing effect hinders the development of siRNA-based therapeutic and research
applications. Existing solutions for finding possible locations of siRNA seats within a large database of genes are
either too slow, miss a portion of the targets, or are simply not designed to handle a very large number of queries.
We propose a new approach that reduces the computational time as compared to existing techniques.

Findings: The proposed method employs tree-based storage in a form of a modified truncated suffix tree to sort
all possible short string substrings within given set of strings (i.e. transcriptome). Using the new algorithm, we pre-
computed a list of the best siRNA locations within each human gene ("siRNA seats”). siRNAs designed to reside
within siRNA seats are less likely to hybridize off-target. These siRNA seats could be used as an input for the
traditional “set-of-rules” type of siRNA designing software. The list of siRNA seats is available through a publicly
available database located at http://web.cos.gmu.edu/~gmanyam/siRNA_db/search.php

Conclusions: In attempt to perform top-down prediction of the human siRNA with minimized off-target
hybridization, we developed an efficient algorithm that employs suffix tree based storage of the substrings.
Applications of this approach are not limited to optimal siRNA design, but can also be useful for other tasks
involving selection of the characteristic strings specific to individual genes. These strings could then be used as
siRNA seats, as specific probes for gene expression studies by oligonucleotide-based microarrays, for the design of
molecular beacon probes for Real-Time PCR and, generally, any type of PCR primers.

Background
siRNA-based silencing of the gene expression involves
homology-dependent suppression of the cognate mRNA
either at the transcriptional or post-transcriptional level
[1]. Most important part of this process involves an
interaction of target mRNA with string-specific double-
strand RNA molecules (siRNAs) of about 21 nt with
3’-overhangs [2]. An annealing of siRNA to unrelated
but partially homologous mRNAs produces interference
with the silencing process leading to a diminished
efficiency [3]. Additionally, mRNAs with partial homol-
ogy to siRNA molecules may also be degraded to some
extent, evoking unwanted physiological effects [4]. In
the clinical settings, e.g. when siRNA is applied as an
antiviral treatment, it may lead to imbalance of the nor-
mal cellular functions that could, in turn, manifests as
side effects of the therapy. This phenomenon, called

‘off-target’ silencing, is known as one of the most
serious problems in RNA interference (RNAi) [3,5].
Until major improvement in siRNA design occurs, both
the development of siRNA-based therapeutic applica-
tions and interpretation of gene function and pheno-
types resulting from RNAi experiments will be hindered.
When tested in vivo, about 80% of theoretically possi-

ble mammalian siRNAs were shown to be not functional
or suboptimal [6]. To improve siRNA design, a set of
rules for detecting 21-mer target sites was proposed,
including a low G+C content, a lack of internal repeats
and an A/U-rich 5’ end [7]. The importance of certain
secondary structures at the siRNA target site [8] and the
absence of the short string matches to the 3’ areas of
other human genes [9] were emphasized. A number of
reliable algorithms for the prediction of highly specific
and efficient siRNAs have been published [Rev. in [10]].
Nevertheless, minimization of the siRNA off-target
effects still needs major improvement.* Correspondence: abaranov@gmu.edu
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A typical approach for off-target effects reduction is
by the similarity search with the basic local alignment
search tool (BLAST) using the organism-specific tran-
scriptome dataset [11]. Use of the BLAST algorithm
promptly returns possible secondary targets, but a pro-
portion of the significant alignments may be missed
[12]. On the other hand, an exhaustive Smith-Waterman
local alignment algorithm [13] returns accurate answers
but is so time-consuming that it often requires hardware
augmentation [14,15]. Several authors proposed adjust-
ments for mismatch tolerance [12,16] that may lower
the effectiveness of siRNA found and, again, are costly
to calculate.
One of the possible ways to increase the speed of

calculations without losing its specificity and sensitivity
is to pre-compute transcriptome-specific sets of gene-
specific strings with decreased redundancy ("siRNA
seats”). For example, Naito et al. aligned all the human
RefSeq and UniGene strings onto the human genomic
strings, and retrieved duplicate-free exons and strings
over exon-exon junctions and pre-computed gene-speci-
fic 19-nt strings with a smaller number of collaborative
off-target hits, defined as complete or partial matches of
multiple 19 nt substrings [12]. Although representing an
important step forward, this approach yields siRNA
candidates that may still cause an off-target effect as the
stretches of as few as 11-to-15 consecutive nts are
enough to produce unwanted silencing [17].
Next improvement has been made by the Comprehen-

sive Redundancy Minimizer (CRM) algorithm that
allows one to map all unique short-string strings ("ker-
nels”) 9-to-15 nt in size (length “N”) within large sets of
strings, e.g. an entire transcriptome [18]. CRM algo-
rithm ensures that every predicted siRNA seat of length
21 is comprised of overlapping kernels of length N,
where N is between 9 and 17. The CRM-based filtering
was tested on two complete transcriptomes, human and
murine, and proven efficient using the collection of
published sets of siRNAs with known efficacies [19].
Here we suggest an alternative to CRM algorithm that

highlights gene-specific siRNA seats with minimized off-
target annealing in a cost-efficient way. Our algorithm
relies on a search efficient truncated suffix tree data
structure. The tree-based organization provides for the
saving of the computation time when it comes to both
storage and searching for substrings within the gene.
The algorithm outputs results in an easily reusable
tab-delimited form.
The idea of suffix trees dates back to the concept of a

position tree introduced in [20]. The construction was
greatly simplified by McCreight [21], and also by Ukko-
nen [22]. Ukkonen provided the first linear-time online
construction of suffix trees, now known as Ukkonen’s
algorithm. This data structure is reminiscent of the

binary trees widely used in computer science and in fact
suffix trees have been used in the information science
literature [23]. In recent years, the concept has found
numerous applications in computational biology [24-27].
The data structure we used in this work is closely
related to the truncated suffix trees utilized in [25-27];
however, it contains the information about the positions
of the substrings in the database and lacks horizontal
links which make it more suitable for the siRNA
application at hand.
Using the new algorithm, we pre-computed a list of

the best siRNA locations within each human gene
("siRNA seats”). The complete list of siRNA locations
with minimized off-target hybridization is available at
http://web.cos.gmu.edu/~gmanyam/siRNA_db/search.
php). These siRNA seats could be used as an input for
the traditional “set-of-rules” type of siRNA designing
software.

Main text
Data structure and problem formulation
Let us now explain in details the type of structure our
algorithm for sorting and analyzing the substrings
within the entire transcriptome is based on. Each
substring of a certain length n is stored in a modified
n-truncated suffix tree with each node having 4 pointers
associated with the nucleotides A,C,G or T, so each
string is represented by a unique path from the root of
the tree to its leaf. The string storing procedure is
carried out in the following way.

Procedure 1 [String Storage Procedure] We create
a branch from the root of the tree to a vertex in the
first level of the tree corresponding to the first charac-
ter in the string (A,C,G or T). We then create a
branch from this vertex to a vertex in the second
level corresponding to the second character, and so
on until we have reached the nth level of the tree,
where n is the total number of characters in the
string. If a certain branch of the tree already exists,
we simply follow that branch to the next level of the
tree without the need to create a new branch.

In the tree, each string is accompanied by certain
information, such as its frequency, gene of origin and
the position within the gene. String-specific information
is stored in each of the leaves, allowing one to avoid
unnecessary string comparisons. Furthermore, the
storage space is generated on demand, so that no mem-
ory is wasted. We call the resulting tree structure with
all the information stored in the leaves a modified
n-truncated suffix tree.
The approach described above is similar to the suffix

tree construction used in the Entropic Profiler software
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introduced in [26]. However, instead of connecting
nodes at the same depth within the tree with “side
links”, we simply store the location of each substring
within the database which enables us to save on storage
and to “sweep” through the siRNA seat computation as
quickly as possible. To explain this distinction, let us
formalize some important notions to be used in the
description of the proposed algorithm.

Definition 1.
Denote G a set of genes, represented as strings.
Consider two integers n and N, with n < N, with n
playing a role of a threshold. Let be the set of all
substrings of length N in the set G (referred to as
N-strings). Two strings x and y in U are called
duplicate N-strings if and only if they belong to dif-
ferent genes and contain at least one pair of
substrings of length n (referred to as n-strings) which
are equal (i.e. there is a substring of x of length
which is equal to some substring of y of the same
length). A string x is called a unique N-string if it is
not a duplicate of any other string in U. Any unique
N-string x in U forms a siRNA seat.

Consider an example given in Figure 1. Given n = 3
and N = 5, the motif CAG (for instance) present in the
first and the third gene leads to the following N-strings
being duplicates according to the above definition:
TGCAG, GCAGA, CAGAG from gene 1 and GTCAG,
TCAGC, CAGCT from gene 2 respectively. In the
meantime, the N-string GAGAG from gene 1 is unique
since there is no substring of length 3 in either gene 2
or 3 equal to GAG or AGA.
The problem to be solved by means of these tools can

be formally described as follows:

Problem formulation.
Given a gene belonging to G find, from left to right,
all maximal substrings of length N that are unique
according to the threshold n. Generate a database

consisting of these unique strings (siRNA seats) col-
lected from all genes in G.

Notice that all seats are of the same length N unless
they happen to be on the boundary of the original gene,
in which case they can be as short as n characters. The
minimal length of a siRNA seat is n.

Algorithm description

Given a database of genes and a fixed positive
integer n, the algorithm stores all n-substrings for the
entire collection of genes. Additionally, for any
n-string, we store the location of each occurrence of
this n-string under the same index of the tree. Sorting
the strings facilitates downstream analysis on the data.
More precisely, the tree-sort algorithm takes as input
a database of genes, comprised of the nucleotides A,
C, G, and T. To store all possible n-strings, we need a
full tree with n+1 levels (counting the root), labelled 0
through n. Since there are four types of nucleotides,
the kth level has at most 4kvertices. Each vertex in the
kth level has branches to four vertices in the (k+1)th

level. In order to locate siRNA seats once the suffix
tree has been built, we first print the list of all unique
substrings in the list UNIQUE_n, which also contains
the associated gene symbol and the location of the
substring within that gene. After the unique strings
have been identified in this fashion, the siRNA “seats”
can be generated on-the-fly without re-reading the
transcriptome. Indeed, for each unique subsequence
specified in the list UNIQUE_n, we need to look at
the N - n characters succeeding it in the original gene.
If not all of the N - n characters are available due to
the proximity of the gene boundary, only available
characters are taken into consideration. All strings of
length N in the resulting set are checked for unique-
ness. Each unique string found this way forms a new
siRNA seat. Algorithm 1 formalizes the steps described
above.

Figure 1 Illustration of a duplicate string concept. This example explains how one finds duplicate strings in a transcriptome consisting of 3
genes containing duplicate strings of length N = 5.

Baranova et al. BMC Research Notes 2011, 4:168
http://www.biomedcentral.com/1756-0500/4/168

Page 3 of 9



Algorithm 1. Suffix tree-based calculation of siRNA
seats of length N with threshold n
Input: G - the set of all genes in the database, a

threshold value n and the siRNA length N.
Output: siRNA seats of length N with threshold value

n.
Put i = 1. Initialize the vector [0, ..., 0].
While (the set of remaining n-strings in G is

non-empty)

Read an n-string from and denote it si. Store siin the
suffix tree according to Procedure 1. Store the corre-
sponding gene ID and the location of the string
within that gene in the leaf. If the substring si already
exists in the tree and belongs to a different gene, set
counteri = 1 to reflect the fact it is a duplicate.
i = i + 1

End while
Identify leaves with counteri= 0 (unique n-strings) and

save their location in UNIQUE_n.
Let nuniquebe the total number of n-strings in

UNIQUE_n.
For (j from 1 to nunique)

For the j-th n-string in the list UNIQUE_n, find a
(larger) N-string containing it by scanning all avail-
able N - n characters to the right of it in the same
gene (found by gene ID). Mark the resulting N-string
as unique if all of its n-substrings exist in the list
UNIQUE_n (Definition 1).

End for
Return all unique N-strings - these represent all siRNA

seats found in G.
The flowchart description of this algorithm is given in

Figure 2. In Figure 3 we provide an illustration of the
steps the algorithm performs to store each of the input
nucleotide strings and to identify the corresponding
siRNA seats for some sample data. In this simple exam-
ple with only 3 genes present, the suffix tree generated
at Step 3 has 13 leaves with 11 of them correspond to
unique n-strings recorded in the list UNIQUE_n. The
output is given in a form of 7 unique N-strings which
we refer to as ‘’siRNA seats’’.
It is worth noting that the tree construction utilized

by Algorithm 1 allows for quick modification of the
results in case new genes are added to the database,
with no need to re-create the suffix tree. The new gene
information in the form of a collection of -strings will
be recorded in the tree based on Procedure 1 and which
will result in incremental changes to the list
UNIQUE_n. Any possible duplicates arising from this
change will be immediately detected when performing

Steps 4-5 of the Algorithm and will allow for fast
recalculation of the siRNA seats.

Memory requirements
The new algorithm requires the following four main
types of memory: character arrays to store the gene
strings, gene structures containing pointers to the each
field in the gene strings, storage structures to track the
location of each n-string, and the tree structures to sort
the n -strings. Suppose our database of genes has G
genes with average length L. Then the memory for the
gene structures is GΔL. Each gene structure contains a
pointer to the gene cluster, a pointer to the gene ID, a
pointer to the actual gene string, and an integer contain-
ing the length of the string. Using 32-bit pointers, each
gene structure requires 16 bytes of memory, and we
need G gene structures. Thus the total memory for the
gene structures is 16G bytes. We need a storage struc-
ture for each N-string in the database. That number is
equal to G(ΔL + 1- n). Since n ≪ ΔL, we use GΔL. The
storage structure contains a pointer to the associated
gene, an integer specifying the location of the N-string
in the gene, and a pointer to another storage structure
containing the previous occurrence of this exact
N-length string. So the total memory for the storage
structures is approximately 12GΔL bytes.
For the character arrays, gene structures, and storage

structures, we need a combined G (13 ΔL + 16) bytes of
memory, which amounts to 700 MB of RAM. The tree
structures contain four pointers to the next level of the
tree, a pointer to a storage structure, and an integer to
count the occurrences of the associated n-string. Thus,
each tree structure requires 24 bytes of memory. The
exact number of tree structures necessary depends on n
and the types of n-strings in the database. Table I shows
how many branches were used for each value of n. The
right column is the tree memory plus 700 MB from the
other three main components. For larger values of n,
the full tree requires a significant amount of storage
space. However, as the algorithm generates storage
space on demand, we only need to create branches and
vertices in the tree to store the n-strings that are
actually present in the transcriptome. Interestingly, we
noted that as n gets larger, the ratio of present n-strings
to all possible n-strings decreases. In fact, for n = 16, we
utilized only 3% of the theoretically complete exhaustive
tree to store all 16-length strings present in human
transcriptome, as demonstrated in Table 1.

Implementation and testing
The new algorithm was implemented in C and com-
pared to the CRM algorithm described in [18]. Both
codes were tested on a 640-core SGI Altix cluster. The
comparative review of the performance is presented in
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Read an n string from the set of genes
Set

Does this substring exist in
the tree in a different gene?

Store the n string in the suffix tree
(Procedure 1). Record gene ID and

location within the gene.

Mark this string as a duplicate,
set

YES

Set

NO

Is the list of n strings
exhausted?

YES

NO

Identify ``leaves’’ with
and save their location in UNIQUE_n

Read a position of a string from
UNIQUE_n and find the N string

containing it

Does this N string contain
any duplicate n substrings ?

Found a new ``siRNA seat’’. Record
it in the output file.

Is the list of unique n
strings exhausted?

YES

STOP

YES

NO

Algorithm 1. Suffix tree based calculation of “siRNA seats’’ of length with threshold

NO

Figure 2 Algorithm 1 flowchart. Algorithm 1 performs suffix tree-based calculation of “siRNA seats’’ of length N with threshold n.
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Figure 4. The new algorithm was able to retrieve the list
of unique substrings of length n, where 9 <n < 15 on
average 100 times faster than the CRM. The time
required for the generation of CRM input, the string
pre-sorting time, is not reflected in the efficiency com-
parison, while the new algorithm has a built-in sorting
routine whose execution time was taken into account.
The advantage of the new method would be even more
visible had the time to pre-sort the list been counted as
part of the CRM execution time too.

Practical application
To demonstrate the utility of the novel algorithm, we
applied it to parse a non-redundant set of human tran-
scripts onto the 11 to 17 nucleotides substring and
extract the sets of siRNA seats comprised of substrings
with given length (Figure 3).

Human mRNA strings were extracted from the NCBI
Unigene dataset (build #219). For each gene, the longest
reference mRNA string with NM identified was extracted
and further processed using the new algorithm.
Predicted siRNA seats were placed in a mySQL data-

base. To provide an access to the siRNA seats stored in
this database, a web interface was built using PHP.
User-friendly interface of the database allows the search
with the HUGO approved Gene Symbol, NCBI Entrez
Gene ID, Genbank Acession or Unigene cluster ID for
siRNA seats comprised of unique oligonucleotides with
selected length. As an output, siRNA seat database lists
all seats with lengths equal or larger than 19 nucleo-
tides, with their relative positions within respective
mRNA string. For the convenience of the user, each
siRNA seat search also returns the string of the mRNA
template used for the tree parsing and some general

Figure 3 Generation of the storage of all substrings. This example illustrates the steps of Algorithm 1 for the input consisting of 3 genes
AGAGAGGC, TCAATCCC and AATAAATC. All of the corresponding n-strings are identified with the number of occurrences stored in the leaf. The
list of unique n-strings is provided, and the “siRNA seats” resulting from this computation are specified.

Table 1 The size and fill-in of the tree needed to store the initial dataset and the memory consumption

N Branches in Full Tree Branches Used % Branches Used Full Tree Memory Actual Tree Memory Total Memory

9 349525 349519 99.998% 8 MB 8 MB 708 MB

10 1398101 1395271 99.798% 32 MB 31.94 MB 731.94 MB

11 5592405 5366925 95.968% 128 MB 122.84 MB 822.84 MB

12 22369621 17849905 79.795% 512 MB 408.55 MB 1.08 GB

13 89478485 45717780 51.094% 2 GB 1.02 GB 1.70 GB

14 357913941 88264307 24.661% 8 GB 1.97 GB 2.65 GB

15 1431655765 138965433 9.707% 32 GB 3.11 GB 3.79 GB

16 5726623061 192967338 3.370% 128 GB 4.31 GB 5.00 GB
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information about the gene of query including its exon/
intron structure. We envision that users may consult
siRNA seats database before embarking on siRNA
design as gene-specific lists of siRNA seats with mini-
mized off-target hybridization may be used as input for
any conventional siRNA designing software instead of
the entire string corresponding to the gene of interest.
The searchable database of all possible human siRNA
seats is available at http://web.cos.gmu.edu/~gmanyam/
siRNA_db/search.php.

Discussion
String-specific small interfering RNAs (siRNAs) could be
used both as therapeutic molecules and as a new instru-
ment for a drug target discovery. Cellular and animal
models already demonstrated the potential of siRNA-
based treatments for cancer, viral infections and inflam-
matory diseases. However, the development of siRNA
based therapeutics is hampered by ‘off-target’ silencing
effects that have to be minimized in order to diminish
the possibility of the side effects.

One relatively straightforward approach to ‘off-target’
minimization is to design siRNA molecules for pairing
up with unique locations within mRNA targets. The
traditional “bottom-up” approach to siRNA design
implies an exclusion of any possible short string
matches using BLAST or Smith-Waterman algorithm.
On the other hand, one may employ “top-down”
approach by using a pre-computed set of least redun-
dant locations within the entire transcriptome (siRNA
seats) as input for the traditional siRNA designing soft-
ware. “Top down” approach requires less siRNA design-
ing skills form a novice researcher and limits the set of
gene-specific candidate siRNAs to a smaller number of
molecules in need of experimental verification. However,
the transcriptome-wide extraction of the least redundant
substrings is not a trivial task. The first algorithm of this
kind, CRM [18] that successfully completed the task,
was far from efficient.
Here we propose a substantially more efficient algo-

rithm that employs tree based storage of the substrings,
which is the first application of this mathematical

Figure 4 Algorithm efficiency comparison. Time taken to retrieve all unique strings of length n for the new algorithm (crosses) and the
previously suggested CRM algorithm (circles) on a logarithmic scale.
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concept in this context. The approach developed here is
not limited to optimal siRNA design, but can also be
useful for other tasks, such as selecting characteristic
strings specific to individual genes in certain organisms.
These strings could then be used as siRNA seats, as
specific probes for gene expression studies by oligonu-
cleotide-based microarrays, for the design of molecular
beacon probes for Real-Time PCR and, generally, any
type of PCR primers.
Another important advantage of the new algorithm

over CRM is that the storage structure created by the
new algorithm automatically records the frequency for
each substring. Therefore, this suffix tree based
approach can be easily utilized to perform other types of
transcriptome analysis, including a search for unique
substrings and absent substrings, analysis of distribu-
tions of the substrings associated with various biological
features, e.g. promoters, 3’ untranslated regions and
open reading frames. This further analysis is the subject
of an ongoing study.
Among the limitations of the proposed algorithm are

1) the necessity of the periodical re-analysis of the avail-
able siRNA seats within transcriptome in order to incor-
porate newly discovered functional RNA transcripts; and
2) inevitable miss of the imperfect siRNA seats that
might couple with respective siRNA and act as “seed
rule” violation but nonetheless efficient miRNAs instead.
Latter possibility needs to be studied experimentally by
systematic analysis of the rejected siRNA seats using
miRNA recognizing algorithms, and is included in the
plan for the future development.

Conclusions
Here we present a new efficient suffix tree-based
algorithm that delivers a comprehensive and systematic
analysis of substrings within an arbitrary set of biological
strings. The proposed algorithm may help to find
biologically significant features within large gene data-
bases. In this paper, we described an application of this
algorithm to exhaustive search for the “siRNA seats” in
entire human transcriptome. Resulting database of
siRNA seats is available at http://web.cos.gmu.edu/
~gmanyam/siRNA_db/search.php.
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