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Abstract

Background: The cancer stem cell model has been proposed based on the linkage between human embryonic
stem cells and human cancer cells. However, the evidences supporting the cancer stem cell model remain to be
collected. In this study, we extensively examined the expression of human embryonic stem cell-associated
signatures including core genes, transcription factors, pathways and microRNAs in various cancers using the
computational biology approach.

Results: We used the class comparison analysis and survival analysis algorithms to identify differentially expressed
genes and their associated transcription factors, pathways and microRNAs among normal vs. tumor or good
prognosis vs. poor prognosis phenotypes classes based on numerous human cancer gene expression data. We
found that most of the human embryonic stem cell- associated signatures were frequently identified in the
analysis, suggesting a strong linkage between human embryonic stem cells and cancer cells.

Conclusions: The present study revealed the close linkage between the human embryonic stem cell associated
gene expression profiles and cancer-associated gene expression profiles, and therefore offered an indirect support
for the cancer stem cell theory. However, many interest issues remain to be addressed further.

Background
The development of human embryonic stem cell (hESC)
is controlled by specific signatures, including specific
transcription factors (TFs), pathways, microRNAs (miR-
NAs) and core genes. These signatures determine the
self-renewal or differentiation fate of hESCs. Cancer is
one of the developmental diseases. The initiation, prolif-
eration and metastasis of cancer are often associated with
the abnormalities of developmental signatures. Like
hESCs, cancer cells are endowed with the ability to self-
renew and proliferate indefinitely.
Based on accumulated evidence linking cancer cells to

hESCs, some researchers proposed cancer stem cell (CSC)
hypothesis [1]. A CSC is defined as “a cell within a tumor
that possesses the capacity to self-renew and to cause
the heterogeneous lineages of cancer cells that comprise
the tumor [2] “. This hypothesis suggests that a small per-
centage of hESC-like CSCs are responsible for initiating
and replenishing the tumor, and the dormant CSCs may
account for cancer metastasis, chemoresistance and

recurrence so that they become potential targets for
improved cancer therapies. One type of evidence support-
ing the CSC model is the identification of surface markers
of cancer-initiating cells (CICs; also known as cancer stem
cells) in various human tumor types. Dick et al reported
that only a subset of cells were able to transplant AML
into recipient mice [3,4]. These tumorigenic cells were
defined as CD34+CD38-, indicating a presence of CD34
proteins and a lack of CD38 proteins on their surface [5].
Dirks et al successfully isolated CSCs (CD133+ cells) from
different phenotypes of brain tumors [6,7]. The CSCs were
also identified in a list of the other tumor types including
breast tumors [8], melanoma [9], ovarian cancer [10,11],
prostate cancer [12], pancreatic cancer [13,14], sarcoma
[15] and colon cancer [16,17]. Although the CSC theory is
supported by some experimental evidences, much conten-
tion exists over whether these evidences are sufficiently
valid or merely are some artifacts [18-21].
Some other types of evidence seems to lend support to

the CSC theory, although they are not direct or absolutely
convincing. For example, hESCs share cellular and mole-
cular phenotypes with tumor cells and cancer cell lines
[22]. Human induced pluripotent stem cells (HiPSCs)
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were first derived with four transcription factors: OCT4,
SOX2, MYC and KLF4 [23] or OCT4, SOX2, NANOG,
and LIN28 [24]. All these transcription factors have been
reported to be highly expressed in various types of cancer
[25-29]. Furthermore, silencing of tumor suppressor gene
p53 significantly increased the reprogramming efficiency
of human somatic cells [30]. Activation of telomerase is in
part responsible for long lifespan of stem cells as well as
anti-apoptosis of cancer cells [13,31-34]. Cell cycle regula-
tion plays a critical role in both stem cells and cancer cells
[35-39].
The linkage between hESC-specific gene expression

profiles and cancer-specific gene expression profiles may
provide evidence in support of the CSC model. To this
end, many studies have identified hESC-associated gene
expression signatures (hESCGESs) [40-44], and several
studies have examined the expression of hESCGESs in
human cancer [45-49]. In [45], the authors provided first
clinical evidence for the implication of a “glioma stem
cell” or “self-renewal” phenotype in treatment resistance
of glioblastoma. In [46], the authors found the hESCGESs
that distinguished primary from metastatic human germ
cell tumors. In [47], the authors identified a subset of
hESC-associated transcription regulators that were highly
expressed in poorly differentiated tumors. In [48], the
authors revealed that an increased expression of some
hESCGESs identified poorly differentiated lung adenocar-
cinoma. In [49], the authors compared the expression of
pluripotency factors OCT4, SOX2, KLF4 and MYC in 40
human tumor types to that of their normal tissue coun-
terparts using publicly available gene expression data,
and found significant overexpression of at least one out
of them in 18 out of the 40 cancer types investigated.
Furthermore, they found that these genes were associated
with tumor progression or bad prognosis. All together,
these studies revealed that “stemness” gene expression
signatures were associated with tumor malignancies, and
therefore might be informative molecular predictors of
cancer therapy outcome [50].
In this study, we investigated the linkage between

hESCGESs and tumor malignancies by an extensive
examination of the expression of hESCGESs in various
human tumor types. We used 51 publicly available gene
expression datasets, which involve 23 human tumor
types [51].

Methods
Identification of human stem cell-associated gene
expression signatures
The self-renewal and differentiation of hESCs are con-
trolled by hESC-specific signal molecules in a signaling-
specific manner. Through a substantial survey of related
literatures, we collected four types of hESCGESs: genes,
pathways, TFs and miRNAs.

We collected 24 hESC-associated gene sets which
were classified into five groups (Table 1 and Additional
file 1, Table S1).
A number of developmental signal pathways, such as

Wnt, Notch, Hedgehog and Bmi-1, are necessary for
regulation of stem cell self-renewal and differentiation.
We identified 54 signal pathways as the hESC-associated
pathway signatures (Table 2).
We identified 189 key TFs involved in regulation of

hESC self-renewal and differentiation including three
core TFs OCT4, SOX2 and NANOG with essential
roles in the transcriptional control of the regulatory cir-
cuitry underlying pluripotency [43,52]. Table 2 lists 30
“critical” TFs. The complete TF list is presented in
Additional file 2, Table S2.
Recent research indicates that miRNAs have an

important role in regulating stem cell self-renewal and
differentiation [53]. We identified 114 hESC-associated
miRNAs. Table 2 lists one part of them. The complete
miRNA list is presented in Additional file 3, Table S3.

Identification of tumor-associated gene expression
signatures
We identified differentially expressed genes among nor-
mal vs. tumor or good prognosis vs. poor prognosis phe-
notypes classes using univariate F-test for unpaired
samples or t-test for paired samples at 0.05 significance
level. This procedure was implemented with the class
comparison between groups of arrays tool in BRB-Array-
Tools, an integrated package developed by Simon et al
for the visualization and statistical analysis of DNA
microarray gene expression data [54]. The software can
be freely downloaded from the website: http://linus.nci.
nih.gov/BRB-ArrayTools.html.
We identified important pathways, TFs and miRNAs by

analyzing gene sets for differential expression among pre-
defined classes. The pre-defined phenotypes classes in
the class comparison algorithm involved two types: nor-
mal vs. tumor and good prognosis vs. poor prognosis.
The latter is concerned with tumor subtypes which exhi-
bit different clinical outcome such as metastasis or not,
relapse or disease free, drug or radio therapy sensitive or
resistance etc., and different tumor progression grades.
The LS or KS permutation test and Efron-Tibshirani’s
GSA maxmean test were used to determine the signifi-
cant gene sets at 0.05 significance level. The pathways
(BioCarta) related to the significant gene sets were identi-
fied. The TFs were identified by the gene sets, in each of
which all genes were experimentally verified to be targets
of the same transcription factor. Each miRNA potentially
targeting all the genes in one of the gene sets was identi-
fied. The identification of important pathways, TFs and
miRNAs was performed with the gene set expression
class comparison tool in BRB-ArrayTools.
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In addition, we used the survival analysis tool in BRB-
ArrayTools to find genes, pathways, TFs and miRNAs
related to survival for the partial datasets which pro-
vided related data. All the executive parameters were
identical to those used in the class comparison.
We compared the identified gene sets, pathways, TFs

and miRNAs to those in hESCGESs, and found their
overlaps, respectively.

Materials
We analyzed 51 human gene expression datasets invol-
ving 23 tumor types (Table 3). For each dataset, we car-
ried out class comparison and/or survival analysis
algorithm to identify informative genes, pathways, TFs
and miRNAs. A total of 75 class comparison and survi-
val analysis were carried out (Table 4). All the refer-
ences relevant to Table 1, Table 2, Table 3 and Table 4
are presented in Additional file 4.

Results
Overlaps between hESCGESs genes and tumor-associated
genes
In the total of 75 class comparisons and survival analyses,
we identified 72 sets of differentially expressed genes

significant at 0.05 threshold level (Additional file 5, Table
S4). We analyzed the overlap between each of the 72
gene sets and each of the 24 hESC-associated gene sets.
We found that they have considerable overlaps. For
example, all the 379 genes in the hESC exp1 gene sets of
Table 1 appeared in at least one of the 72 differentially
expressed gene sets (DEGSs). Among them, 308 genes
appeared in 10 or more DEGSs, and 120 genes appeared
in 20 or more DEGSs. The most frequently overlapping
gene was MTHFD2 (methylenetetrahydrofolate dehydro-
genase (NADP+ dependent) 2, methenyltetrahydrofolate
cyclohydrolase), which occurred in one half the 72
DEGSs. The second most overlapping genes are MCM4
and MCM6 (34 overlaps), two members of the gene
family encoding the mini chromosome maintenance
complex. All the 40 genes in the hESC exp2 gene sets of
Table 1 also occurred in at least one DEGS, and 26 genes
occurred in no less than 10 DEGSs. Among them,
MYBL2, a member of the MYB family of transcription
factor genes involved in cell cycle progression, most fre-
quently occurred in the DEGSs (31 times).
Table 5 gives the number of the genes which have 10

or more overlaps and the top 10 overlapping genes in
each of the 24 hESC-associated gene sets, suggesting that

Table 1 hESC-associated gene sets

Group Gene set #Genes Description

hESC exp1 379 Overexpressed in hESCs according to 5 or more out of 20 profiling studies

hESC exp2 40 Overexpressed in hESCs according to a meta-analysis of 8 profiling studies

hESC exp3 48 Overexpressed in hESCs in at least 10 studies

hESC exp4 30 Underexpressed in hESCs in at least 6 studies

hESC exp5 189 TF genes in hESCs

hESC expressed hESC exp6 44 Highly expressed in undifferentiated hESCs

hESC exp7 994 High connectivity (≥ 500) in the global co-expression networks of hESCs

hESC exp8 22 Candidate hESC markers

hESC exp9 27 Differentially upregulated in hESCs

hESC exp10 31 The most abundant transcripts expressed in hESCs

hESC exp11 1, 000 Significantly identified in hESC lines by SAM analysis

Nanog targets 988 Genes activated by Nanog in hESCs

Oct4 targets 290 Genes activated by Oct4 in hESCs

NOS targets Sox2 targets 734 Genes activated by Sox2 in hESCs

NOS targets 179 Overlap of three above sets

NOS TFs 37 Transcription regulators in NOS targets set

NOS co-bound 353 Genes co-bound by Nanog, Oct4 and Sox2 in hESCs

Suz12 targets 1, 040 Genes bound by Suz12

Polycomb targets Eed targets 1, 066 Genes bound by Eed

H3K27 bound 1, 121 Genes bound by H3K27

PRC2 targets 654 Overlap of three above sets

Myc targets Myc targets1 230 E-box-containing genes regulated by c-Myc in cultured cell lines

Myc targets2 775 Genes commonly regulated by c-Myc and Max in a Burkitt’s lymphoma cell line

P53 targets 35 Common gene lists regulated by p53 in mouse and human

Wang BMC Research Notes 2011, 4:471
http://www.biomedcentral.com/1756-0500/4/471

Page 3 of 17



a large proportion of the hESC-associated genes are
also related to cancer. Gene function enrichment analysis
suggests that a substantial portion of the genes listed
in Table 5 are involved in cell cycle regulation,
DNA damage repair and replication, apoptosis, develop-
ment and differentiation, cell adhesion and TF activity
(Table 6).

We carried out significance analyses of the overlapping
gene sets between each of the 72 DEGSs and each of the
24 hESC-associated gene sets based on the hypergeo-
metric test. Three heatmaps of hypergeometric p-values
are presented in Figure 1, Figure 2 and 3, which visualize
the significance of the overlap between the hESC-asso-
ciated gene sets and the DEGSs among normal vs. tumor,
good prognosis vs. poor prognosis phenotypes classes,
and survival analysis, respectively (the detailed descrip-
tion of all the datasets related to each figure is provided
in Additional file 6). These figures show that the targets
of three core hESC-associated TF OCT4, SOX2 and
NANOG have significant overlaps with most of the
DEGSs. Two gene sets targeted by MYC also shows sig-
nificant overlaps with most of the DEGSs. These results

Table 2 hESC-associated signal pathways, TFs and
miRNAs

Pathway TF miRNA

Activin TP53 miR-143

AKT MYC miR-145

ALK GATA4 miR-187

ATM SMAD1 miR-296

BMI1 ESRRB miR-301

BMP SOX2 miR-21

Cell cycle NANOG let-7a

EGF/EGFR KLF4 miR-371

ERBB2 MYB miR-372

ERK MYCN miR-373

FGF ZFX miR-367

Glycolysis STAT3 miR-302a

Hippo ZIC3 miR-302a*

IGF ZFP42 miR-302b

JAK/STAT SALL4 miR-302b*

c-KIT REST miR-302c

Lefty TCF3 miR-302c*

LIF HOXB1 miR-302d

MAPK HAND1 miR-200c

MEK/ERK POU5F1 miR-222

NF-�B SRY

NHEJ/HR a TBX5

Nodal E2F4

Notch GATA6

p53 PAX6

PRC2 TCF4

PDGF FOXD3

PI3K CNOT3

PTEN ZEB2

RAS ESX1L

RTK

Hedgehog (SHH)

Smad

Stat3

Telomerase

TGFb

VEGF

WNT
a NHEJ: non-homologous DNA end-joining; HR: homologous recombination

Table 3 Fifty-one human tumor gene expression datasets

Tumor Type # Datasets

Bladder Cancer 1

Brain Cancer 6

Breast Cancer 5

Colon Cancer 1

Cervical Cancer 1

Embryonal Cancer 1

Esophageal Cancer 1

Gastric Cancer 2

Head and Neck Cancer 3

Leukemia 3

Liver Cancer 1

Lung Cancer 2

Lymphoma 4

Medulloblastoma 1

Melanoma 2

Mesothelioma 1

Ovarian Cancer 1

Pancreatic Cancer 1

Prostate Cancer 5

Renal Cancer 4

Soft Tissue Sarcoma 2

Thyroid Cancer 1

Uterine Leiomyoma 2

Table 4 Summary of the algorithms performed for all
datasets

Algorithms #Algorithms
performed

Class
comparison

normal vs. tumor 31

good prognosis vs. poor
prognosis

38

Survival analysis 6
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suggest that key hESC-associated gene expression signa-
tures have important implications in pathogenesis of
cancer.

Overlaps between hESCGESs pathways and tumor-
associated pathways
In the total of 75 class comparison and survival analyses,
we identified 68 groups of pathways significant at 0.05
threshold level. Among the 54 hESC-associated signal
pathways signatures, 26 pathways appeared at least in
eight different groups and the other 28 pathways didn’t

appear in any group. The most frequent identified path-
way was the Cell Cycle pathway, which appeared for 57
times (84% occurrence rate), and the next one was the
MAPK pathway which was identified for 50 times (74%
occurrence rate). Table 7 lists all the 26 pathways and
their occurrence frequencies in the 68 groups of path-
ways significant in the cancer datasets. These pathways
have been proven to play important roles in both main-
tenance of hESC function and tumorigenesis.
Clearly, the Cell Cycle pathway plays an extremely

important role in regulation of the self-renewal and

Table 5 Overlaps between the 24 hESC-associated gene sets and the 72 differentially expressed gene sets

Gene sets #Genes with 10 or more overlaps b Top 10 overlapping genes

hESC exp1 308 (81%) MTHFD2, MCM4, MCM6, LGALS8, PPP2R1B, RFC4, GART, BUB1, LCK, PTPN2

hESC exp2 26 (65%) MYBL2, EPHA1, ORC2, DTYMK, PRKD3, NCAPH, ETV4, DSCC1, CDC25A, PWP2

hESC exp3 38 (79%) BUB1, DLGAP5, SLC16A1, USP9X, HSPA4, TERF1, PSIP1, PLA2G16, UGP2, BMPR1A

hESC exp4 29 (97%) SPARC, COL1A2, COL3A1, COL1A1, CD47, COL5A2, KRT18, KRT8, LUM, COL6A3

hESC exp5 135 (71%) TCF4, STAT1, GATA3, MAF, MYC, MYBL2, ILF3, SMAD4, FUBP1, GATA2

hESC exp6 28 (64%) CD9, IL6ST, PTEN, EDNRB, KIT, NR5A2, IFITM2, CRABP2, NFYC, PODXL

hESC exp7 863 (87%) GNAS, FN1, SPARC, MCM6, MCM4, TOP2A, COL1A2, COL3A1, RFC4, RAB31

hESC exp8 11 (50%) FAS, CKS1B, GJA1, NPM1, TGIF1, HMGA1, DNMT3A, ERH, SOX2, DNMT3B

hESC exp9 21 (78%) PCNA, CKS1B, FAS, TERF1, GJA1, CCNB1, NPM1, FZD7, SFRP1, HMGA1

hESC exp10 30 (97%) PGK1, BAK1, HNRNPA1, EEF1A1, PPIA, GAPDH, GJA1, TMED2, EEF1B2, NPM1

hESC exp11 749 (75%) PDE4DIP, FGFR2, CKS2, MTHFD2, SOX4, SLC2A3, STAT1, MAPK1, PSMB2, MCM4

Nanog targets 711 (72%) CALD1, FGFR2, CKS2, TNPO1, KIAA0101, SPARC, TOP2A, ARHGAP1, B2M, VCAN

Oct4 targets 211 (73%) FGFR2, TCF4, KIAA0101, TOP2A, PPP2R1B, TCF12, UBE2D3, RAB5A, HMGB2, PTPN2

Sox2 targets 542 (74%) FGFR2, TOP2A, ARHGAP1, VCAN, PPP2R1B, UBE2D3, CBX3, RAB5A, PIK3R3, H2AFX

NOS targets 132 (74%) FGFR2, TOP2A, PPP2R1B, UBE2D3, RAB5A, PTPN2, SET, FGFR1, BUB3, ADD3

NOS TFs 28 (76%) STAT3, MYST3, IFI16, MLLT10, FOXO1, PHF17, ZFP36L1, TAF12, HHEX, ZEB2

NOS co-bound 199 (56%) FGFR2, TOP2A, PPP2R1B, UBE2D3, RAB5A, PTPN2, SET, FGFR1, BUB3, BMI1

Suz12 targets 512 (49%) PDE4DIP, BCL2, GNAS, PTGER3, CD44, RAB31, CYP1B1, EPHB1, GATA3, HLF

Eed targets 510 (48%) PDE4DIP, BCL2, PTGER3, PRKCB, CD44, INPP4A, CYP1B1, EPHB1, GATA3, HLF

H3K27 bound 557 (50%) PDE4DIP, BCL2, PTGER3, PRKCB, EPHB1, GATA3, NTRK2, CD47, GPD1L, NCAM1

PRC2 targets 397 (61%) PDE4DIP, BCL2, PTGER3, EPHB1, GATA3, NTRK2, NCAM1, CACNA1D, GATA2, GPM6B

Myc targets1 204 (89%) BCL2, MCM4, TGFB3, CCND2, APC, MUC1, TCF12, ENO1, APP, CSTB

Myc targets2 645 (83%) CKS2, PPP2R1B, TCF12, UBE2D3, CDC25B, H2AFX, HLA-A, PDK3, PRKDC, TMF1

P53 targets 27 (77%) GATM, MYH11, TP53, BTG2, INPP5D, MDM2, MYB, SPARCL1, PLK4, FMO5
b The percentage of the overlapping gene number relative to the total gene number for each of the 24 hESC-associated gene sets is given in parenthesis.

Table 6 Functional categories of the genes listed in Table 5

Functional categories Representative genes

Cell cycle regulation ORC2, NCAPH, DSCC1, CDC25A, CDC25B, CKS2, CKS1B, BUB3, CCND2, CCNB1, DLGAP5

DNA repair/replication TOP2A, MCM4, MCM6, RFC4, PCNA, PPIA, HMGB2, H2AFX, PRKDC

Apoptosis FAS, BAK1, IFI16, PHF17, BTG2, PSMB2, BCL2, APC, TP53

Development/
differentiation

ETV4, FGFR1, FGFR2, VCAN, STAT3, HHEX, EPHB1, NTRK2, GPM6B, TGFB3, BMI1, SOX2, DNMT3B, SOX4

Cell adhesion VCAN, CD9, CD44, CD47, NCAM1, COL6A3, PODXL, FN1

TF activity GATA2, TMF1, STAT1, STAT3, MAF, FUBP1, MYB, NFYC, TGIF1, SOX2, ZEB2, TAF12, ZFP36L1, MLLT10, MYST3, TCF4, TCF12,
ETV4, MYBL2
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pluripotency process of hESCs [55-59]. The undifferen-
tiated hESCs have a short G1 phase, and therefore show
rapid cell cycle characteristic relative to differentiated
somatic cells. The unorthodox G1/S phase transition fea-
ture in the hESC cell cycle is associated with the deregu-
lated proliferation and differentiation blockades of tumor
cells [39,60-65]. The MAPK (Mitogen-Activated Protein
Kinase) pathway regulates both the early embryonic
development and the embryonic stem cell commitment
from early steps of the process to mature differentiated
cells [66]. The role of MAPK pathway in cancer is

prominent as cancer can be perceived as a disease of
communication between and within cells. The statistical
significance analysis also shows that both the Cell Cycle
pathway and MAPK pathway have important association
with a majority of tumor types (see Additional file 7, Fig-
ure S1, Additional file 8, Figure S2 and Additional file 9,
Figure S3).
The importance of IGF signaling pathway for mainte-

nance of hESCs has been proven [67-70]. This signaling
pathway appears to play a crucial role in cancer and can
be of potential interest in cancer therapy [71-77]. The
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Figure 1 Significance of overlap between hESC and tumor gene sets by normal vs. tumor class comparison. The detailed description of
all the datasets is provided in Additional file 6.
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ERK pathway is active in the undifferentiation status of
hESCs. Its activation is critical in maintenance of hESC
self-renewal [78-81]. On the other hand, there has been
accumulating evidence of ERK pathway (RAF-MEK-ERK
signaling cascade) in oncogenesis to make it an attractive
target for drug development [82].
Interestingly, almost all the widely-recognized hESC-

associated pathways such as SHH, WNT, PRC2, Notch,
PTEN and TGFb have important linkage with cancer (see
Table 7). The SHH (Sonic Hedgehog) signaling pathway
is one of the key regulators of human embryonic

development [83-87]. Activation of the pathway leads to
an increased risk of the development of cancerous malig-
nancies [87-94]. The WNT signaling pathway is a network
of a number of proteins acting as a critical regulator of
hESCs [43,56,59,69,79,84,85,95-103]. However, the deregu-
lation of the pathway has been closely associated with
cancer [83,86,90,94,103-114]. The PRC2 (Polycomb
Repressive Complex 2) pathway is involved in control of
the developmental regulators in hESCs [50,56,115-118].
The expression of PRC2 components is upregulated in
various cancers such as melanoma, lymphoma, and breast
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and prostate cancer. The Notch signaling pathway plays a
key role in the normal development of hESCs and many
other cell types depending on the expression level and
cellular context of the Notch receptors [84,85,101,119]. Its
deregulation potentially contributes to cancer develop-
ment in several different ways [111,120-126]. The PTEN
(PhosphaTase and Tensin Homolog) acts as a tumor sup-
pressor gene involved in regulation of the cell cycle, pre-
venting cells from growing and dividing too rapidly. This
pathway is also critical for stem cell maintenance
[59,69,83]. The TGFb (Transforming Growth Factor b)
signaling pathway is of central importance to the self
renewal of hESCs [43,59,69,79,84,85,96,98-102,115,
127,128]. This signal pathway is involved in a wide range

of cellular processes in both the adult organism and the
developing embryo. It plays a role in both tumor suppres-
sion and tumor progression depending on cellular context
[129-132].
Additional two important pathways involved in both

hESCs function and tumorigenesis are p53 and telomer-
ase pathways. They were identified for 21 and 22 times
in our 68 class comparison or survival analysis (see
Table 7). The p53 pathway can maintain the homeosta-
sis of self-renewal and differentiation of hESCs
[133-135]. Inactivation of this pathway in several cancer
types may correlates with hESC-specific signatures
[22,136,137]. Telomerase enzyme levels or activity has
shown to be highly expressed in embryonic stem cells
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[79]. On the other hand, telomerase is reactivated and
serves to maintain telomere length in most advanced
cancers [34].
Taken together, the high overlap between hESCGESs

pathways and tumor-associated pathways reveals that
there exist common mechanisms underlying cancerous
malignancies and “stemness” of hESCs.

Overlaps between hESCGESs TFs and tumor-associated TFs
We identified 73 groups of targets of TFs significant at
0.05 threshold level. Among the 189 hESC-associated
TF signatures, 42 TFs appeared at least in three different
groups and the others didn’t show in any group. The
most frequently identified TF was MYC with 56% occur-
rence rate (41 occurrences), and the next one was MYB
with 51% occurrence rate (37 occurrences). The com-
plete 42 TFs accompanying with their occurrence fre-
quencies are presented in Table 8.
From Table 8, we can see a number of “stemness” TFs

identified as informative in tumors. Evidently, MYC is
one of the most important TFs in both hESCs and

Cancer cells [22,23,44,48,49,52,56,116,138-140]. MYC
represses differentiation and maintains the self-renewal
of mouse and human pluripotent stem cells [138,141].
MYC regulatory networks may account for most of the
transcriptional similarity between embryonic stem cells
and cancer cells [139]. The statistical significance analysis
also shows that MYC plays an important role in most of
the tumor types analyzed (see Additional file 10, Figure
S4, Additional file 11, Figure S5 and Additional file 12,
Figure S6).
Another extremely important TF is POU5F1 (OCT4),

which is necessary for induction of pluripotent stem cells
from human somatic cells [23,24]. OCT4 constitutes the
core transcriptional regulatory circuitry in hESCs in com-
bination with SOX2 and NANOG essentially responsible
for the early development and propagation of undifferen-
tiated hESCs [43,44,52,56,58,59,79,84,97,116,117,119,
142,143]. OCT4 expression appears to be important in
maintaining the undifferentiated state of embryonal carci-
noma [86,144], as well as in other cancers [27,145].
Our analysis results suggest that several families of

hESC-associated TFs like MYB, E2F, PAX, SMAD,
STAT, POU, SP and GLI, are related to cancer (Table 8).
For example, three members of the TF family MYB:
MYB, MYBL1 and MYBL2, appear to be closely asso-
ciated with cancer (Table 8). In fact, a substantial number
of studies have revealed that they had important roles in
regulation of stem cell self-renewal and differentiation
[146,147], and the development of cancer [148,149]. E2F
plays a crucial role in control of the cell cycle progression
and regulating the expression of genes required for G1/S
transition [150], and therefore is important for stem cell
self-renewal and differentiation. The members of the
family E2F1, 2, 3 and E2F4 have been reported to be
associated with cancer [151]. PAX plays an essential role
in regulating cell proliferation and self-renewal, resis-
tance to apoptosis, migration of embryonic precursor
cells, and the coordination of specific differentiation pro-
grams during embryonic development [59], as well as the
development of cancer [152]. SMAD regulates cell prolif-
eration and differentiation by activating downstream
TGFß gene transcription. Its members play important
roles in hESC fate determination [98], and cancerous
pathogenesis [153]. STAT regulates cell growth, survival
and differentiation via activation by JAK (Janus kinase).
This pathway is critical for regulation of stem cell self-
renewal and differentiation [101]. Deregulation of this
pathway is frequently observed in various tumor types
[154]. POU mainly regulate the development of an organ-
ism, and are also involved in various cancers [155]. SP1
and SP3 are two members of the TF family SP (Specificity
Protein) which binds GC-rich DNA sequences. Their
roles in hESCs and cancer cells have been widely recog-
nized [26]. GLI encompasses three members: GLI1, GLI2

Table 7 Twenty-six hESC-associated pathways frequently
identified in tumors

Pathway Frequency

Cell Cycle 57

MAPK 50

IGF 31

EGF/EGFR 30

ERK 29

SHH 28

AKT 26

RAS 25

NF-�B 22

Telomerase 22

p53 21

WNT 20

PRC2 19

ALK 16

NOTCH 15

ATM 14

VEGF 14

PDGF 13

ERBB2 11

JAK/STAT 11

PI3K 11

PTEN 11

TGFb 11

MEK 10

STAT3 9

Glycolysis 8

Wang BMC Research Notes 2011, 4:471
http://www.biomedcentral.com/1756-0500/4/471

Page 9 of 17



and GLI3, all of which mediate the Hedgehog pathway
and therefore are involved in hESC fate determination
and cancerous pathogenesis [87].

In summary, the substantial overlap between the TFs
involved in hESC fate determination and the TFs involved
in cancerous pathogenesis suggests that hESCs and cancer
cells may share essential regulatory mechanisms.

Overlaps between hESCGESs miRNAs and Tumor-
associated miRNAs
We identified 67 groups of miRNA targets significant at
0.05 threshold level. Among the 114 hESC-associated
miRNA signatures, 102 miRNAs appeared at least in eight
different groups and the other 12 miRNAs didn’t show in
any group. The most frequently identified miRNA was
miR-29c, which occurred for 34 times (51% occurrence
rate), and the next one was miR-200b which occurred for
30 times (45% occurrence rate). Table 9 lists 50 miRNAs
whose occurrence frequencies are no less than 20. The
complete 102 miRNAs accompanying with their occur-
rence frequencies are presented in Additional file 13,
Table S5.
Notably, there is a broad range of overlap between

“stemness” miRNAs and oncogenic miRNAs. Most of the
important “stemness” miRNAs are presented in Table 9 or
Table S5. The miR-302 cluster miRNAs (miR-302a, miR-
302a*, miR-302b, miR-302b*, miR-302c, miR-302c*, miR-
302d) have been shown to regulate important cellular
functions in hESCs, including cell proliferation and chro-
matin structure, and have been consistently reported to be
overexpressed in hESCs [156]. All the seven members of
this group appear in Table S5, and five of them are also
presented in Table 9, indicative of their close linkage with
cancer. Some literatures have reported the relatedness
between miRNA-302 family and tumorigenecity
[157-160]. Another group of miR-200 family miRNAs
(miR-200a, miR-200b, miR-200c, miR-141 and miR-429)
have been revealed to be hESC-specific, and upregulated
in hESCs [156,161,162]. Three of them are presented in
Table S5 and miR-200b and miR-200c are also listed in
Table 9 with relatively high frequencies (30 and 26, respec-
tively), strongly indicating their association with cancer. In
fact, this miRNA family plays an important role in cancer-
ous pathogenesis [163-165]. The miRNA-520 cluster on
chromosome 19 was highly expressed in undifferentiated
hESCs, and might be closely involved in hESC function
[156,166]. Its eight members miRNA-520a-h show in
Table S5 and six members miRNA-520a-f also show in
Table 9, suggesting that the miRNA family has tight con-
nection with cancer. Many studies have revealed the relat-
edness between its members and cancer [167-170]. The
miR-518b, miR-518c, miR-519b and miR-519c have been
consistently reported to be overexpressed in undifferen-
tiated hESCs [156,166,171,172]. Our analysis outcomes
suggest that they may be closely involved in the develop-
ment of cancer (Table 9). This finding is supported by
some studies [173,174]. In addition, the other miRNA

Table 8 Forty-two hESC-associated TFs frequently
identified in tumors

TF Frequency

MYC 41

MYB 37

SP1 33

TP53 33

E2F4 33

TFAP2A 32

E2F1 32

JUN 30

SMAD1 27

TAL1 24

NFKB1 23

STAT3 23

MYBL2 22

ETS1 21

ETS2 20

POU2F1 20

POU2F2 18

STAT1 18

WT1 18

ETV4 18

HOXA9 17

SMAD3 17

E2F2 17

SP3 16

LEF1 14

NFKB2 14

POU5F1 13

PAX6 11

STAT4 11

SMAD4 10

GLI1 10

PAX3 9

PAX2 8

MYBL1 8

PAX5 7

SMAD2 7

GLI2 6

PAX8 6

STAT2 6

GLI3 3

POU3F2 3

E2F3 3
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families shown in Table 9 like miRNA-29, 19, 15, 20
and let-7 have been revealed to be involved in both
hESC fate determination and cancerous pathogenesis
[53,96,161,175].
The statistical significance analysis shows that some

“stemness” miRNAs like miR-29 family member miR-
29a, miR-29b and miR-29c are associated with a broad
spectrum of tumor types (see Additional file 14, Figure
S7, Additional file 15, Figure S8 and Additional file 16,
Figure S9).
Taken together, a number of miRNAs play crucial roles

in both hESC fate determination and tumorigenicity.

Discussion
Although the evidence strongly supporting the CSC the-
ory remains insufficient, and the fundamental experimen-
tal evidence for CSCs based on mouse xenograft models
are controversial [21], the CSC model is attractive for it
provides reasonable explanation of the development
mechanisms underlying cancer, as well as a promise of
improved cancer therapies. Therefore, any proof in favor
of the CSC theory is valuable in the biology of cancer.
In this study, we provided an indirect evidence for the

CSC theory using the computational biology approach.
We found a strong linkage between hESCs and cancer
cells by an examination of the similarity between the
hESC-specific gene expression profiles and cancer-specific
gene expression profiles. The hESC-specific gene expres-
sion signatures including genes, pathways, TFs and miR-
NAs were generally differentially expressed among normal
vs. tumor phenotypes, or among cancer subtypes with dis-
tinct clinical outcomes. The genes important in regulation
of hESC self-renewal and differentiation such as SOX2
and MYB, were also closely involved in tumorigenicity.
The signal pathways such as the Cell Cycle, MAPK, SHH,
WNT, PRC2, Notch, PTEN and TGFb involved in the
hESC fate determination were also strongly associated
with cancer genesis, progression and prognosis. The typi-
cal hESC-specific TFs like OCT4 and c-Myc (also known
as MYC), appeared to be important in control of the
undifferentiated state of cancer cells. The miRNAs overex-
pressed in undifferentiated hESCs like miRNA-302, 200
and 520 cluster miRNAs, were closely involved in the
development of cancer.
Generally speaking, the cell cycle regulation mechan-

ism mostly underlies the commonality between hESCs

Table 9 Fifty hESC-associated miRNAs frequently
identified in tumors

miRNA Frequency

miR-29c 34

miR-200b 30

miR-19b 29

miR-29a 29

miR-29b 29

let-7a 28

miR-520f 28

miR-21 27

miR-302c 27

miR-302d 27

miR-494 27

miR-518b 27

miR-519c 27

miR-520a 27

miR-200c 26

miR-26a 26

miR-302a 26

miR-30d 26

miR-124a 25

miR-16 25

miR-19a 25

miR-302b 25

miR-374 25

miR-518c 25

miR-519b 25

miR-15a 24

miR-15b 24

miR-18a 24

miR-20b 24

miR-301 24

miR-520b 24

miR-520c 24

miR-130a 23

miR-18b 23

miR-369-3p 23

miR-520d 23

miR-520e 23

miR-103 22

miR-154 22

miR-20a 22

miR-525 22

miR-93 22

miR-17-5p 21

miR-302c* 21

miR-470 21

miR-515-5p 21

Table 9 Fifty hESC-associated miRNAs frequently identi-
fied in tumors (Continued)

miR-517c 21

miR-106a 20

miR-146b 20

miR-96 20

Wang BMC Research Notes 2011, 4:471
http://www.biomedcentral.com/1756-0500/4/471

Page 11 of 17



and cancer cells. Differing from somatic cells, hESCs
have an abbreviated G1 phase in cell cycle, which is cri-
tical for maintenance of hESC self-renewal and pluripo-
tency. The abbreviated G1 phase is also largely
responsible for the uncontrolled proliferation of tumor
cells which escape from the programmed cell death dur-
ing the G1 phase [62]. In fact, the hESC-associated sig-
natures most frequently identified in tumors are mainly
involved in regulation of cell cycle (see Table 6, Table 7,
Table 8 and Table 9). Among them, the TF c-Myc is
the core signature connecting hESCs with cancer cells.
c-Myc binds genic and intergenic regions to regulate the
expression of thousands of genes and noncoding RNAs
throughout the genome [138]. c-Myc is involved in the
cell cycle regulation by directly regulating cell cycle reg-
ulators [44,116,138], or regulating miRNAs which inhibit
cell cycle regulators [96,138]. The role of c-Myc in link-
ing hESCs with cancer has been recognized [138,139].
Here we identified differentially expressed genes at 0.05

significance level. A more stringent significance threshold
of 0.001 would be more statistically reasonable if consider-
ing corrections of multiple hypotheses. Because the num-
bers of significant pathways, TFs and miRNAs identified
by analyses of gene sets would be small for a majority of
datasets if the significance threshold of 0.001 were used
under which the number of differentially expressed genes
were still often substantial, we selected the 0.05 signifi-
cance level for all the differentially expressed analyses in
order to keep consistency.
One limitation of this study was that the analyses were

mainly based on the computational biology approach
which needs experimental validation to corroborate these
findings. In addition, some finer analyses such as group-
ing the overlaps of gene signatures between hESCs and
tumors according to different tumor categories, separat-
ing the differentially expressed genes into the overex-
pressed and underexpressed genes etc., may contribute to
a better understanding of the similarities between hESCs
and tumor cells in gene expression profiles. Another lim-
itation of this study was that we identified tumor-asso-
ciated gene expression signatures based on whole tumor
samples which might be derived from the majority of
tumor cells, not necessarily from the minority of CSCs so
that the overlapping signatures identified between hESCs
and tumors might not be able to provide a strong support
for the CSC model. If the tumor-associated gene expres-
sion signatures were identified by comparison between
isolated CSCs versus non-CSCs fraction of the same
tumor, the same results would be more reliable in sup-
port of the CSC model. These issues could be addressed
in future research.
A further problem is the intertwined relationships

between stem cell, cancer and ageing [176]. Cancer is
actually an age-related disease as the incidence of cancer

grows exponentially with ageing. Meanwhile, ageing is
mostly caused by a decline in the replicative function of
stem cell [177], and in turn aging has effects on the func-
tion of stem cell [178]. Thus, an in-depth investigation of
the molecular mechanisms that connect stem cell, cancer
and ageing will be necessary for postponing ageing and
overcoming cancer.

Conclusions
The present results revealed the close linkage between
the hESC-specific gene expression profiles and cancer-
specific gene expression profiles, and therefore offered
an indirect support for the CSC theory. However, many
interest issues remain to be addressed further.

Availability of supporting data
The 51 human cancer gene expression datasets are
available at the following website: http://linus.nci.nih.
gov/~brb/DataArchive_New.html. All the other datasets
supporting the results of this article are included within
the article and its additional files.
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