
Koklic and Štrancar BMC Research Notes 2012, 5:179
http://www.biomedcentral.com/1756-0500/5/179
HYPOTHESIS Open Access
Lysolipid containing liposomes for transendothelial
drug delivery
Tilen Koklic1,2* and Janez Štrancar1,2
Abstract

Background: Designing efficient 'vectors', to deliver therapeutics across endothelial barriers, in a controlled manner,
remains one of the key goals of drug development. Recently, transcytosis of liposome encapsulated fluorescence
marker calcein across a tight cell barrier was studied. The most efficient liposomes were found to be liposomes
containing sufficient amount of alkyl phospholipid (APL) perifosine. APLs have similar structure as lysophosphatidyl
choline (LPC), since APLs were synthesized as metabolically stable analogues of LPC, which increases endothelial
permeability directly by inducing endothelial cell contraction, resulting in formation of gaps between endothelial
cells. Since one of the unique properties of lysolipid, containing liposomal formulations is dynamic equilibrium of
lysolipids, which are distributed among liposomes, micelles, and free form, such liposomes represent a reservoir of
free lysolipids. On the other hand lysolipid containing liposomes also represent a reservoir of an encapsulated
hydrophilic drug.

Presentation of the hypothesis: We hypothesize that free lysolipids, with highest concentration in vicinity of drug
carrying liposomes, compromise endothelial integrity, primarily where concentrations of liposomes is the highest, in
a similar manner as LPC, by formation of gaps between endothelial cells. Liposome encapsulated drug, which leaks
from liposomes, due to liposome destabilization, caused by lysolipid depletion, can therefore be efficiently
transported across the locally compromised endothelial barrier.

Testing the hypothesis: This hypothesis could be verified: by measuring binding of perifosine and other lysolipids
to albumin and to lysophospholipid receptor (LPL-R) group; formation of stress fibers and subsequent cell
contraction; activation of RhoA, and endothelial barrier dysfunction; by a synthesis of other LPC analogues with high
critical micellar concentration and measuring their effect on transendothelial permeability in presence and absence
of albumin.

Implications of the hypothesis: We propose that lysolipid containing liposomal formulations might be used as
nonspecific transendothelial transport vector, since leakage of liposome encapsulated active drug occurs
simultaneously with the release of the lysolipids. The concentration of the active drug is therefore expected to be
the highest at the site of compromised endothelial barrier. By appropriate choice of the lysolipids an endothelial
barrier would stay open only for a short time. Use of such liposomes would potentially maximize the delivery of the
drug while limiting the passage of toxic substances and pathogens across the endothelial barrier. Combining
lysolipid containing liposomes with superparamagnetic iron oxide nanoparticles or a targeting ligand might be
required to efficiently localize drug delivery to a disease affected tissue and to avoid endothelial disruption over the
entire body.
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Background
Transendothelial delivery of hydrophilic drugs
Transcytosis holds a great potential for drug delivery
across different endothelial barriers. Designing efficient
'vectors' (antibodies, protein carriers, viruses, nanoparticles)
to deliver therapeutics, especially to the disease-affected
brain tissue, in a controlled and non-invasive manner
remains one of the key goals of drug development [1]. Care-
ful regulation of material exchange into and out of the brain
is essential for the survival of neurons, which do not have a
significant capacity to regenerate. This transport is regulated
by the blood–brain barrier (BBB), a dynamic interface be-
tween the blood and the brain formed by endothelial cells
of the brain capillaries. However, it also very efficiently pre-
vents the brain uptake of most therapeutically active com-
pounds. Because of this, many diseases of central nervous
system (CNS), such as Alzheimer’s disease, are under-
treated. As a result, various strategies have been developed
to improve the access of drugs to the brain parenchyma at
therapeutically necessary concentrations to effectively
manage diseases [2,3]. Various drug delivery systems such
as: liposomes, surfactant coated polymeric nanoparticles,
solid lipid nanoparticles [4], microspheres, nanogels, and
bionanocapsules were tested for delivery of drugs to
tumors of the CNS with different efficiancies [5-8]. Even
though transcytosis is often thought to be a selective
process, endothelial cells of microvasculature move
macromolecular cargo rather nonselectively within the
fluid phase of the transport vesicle or by absorption to the
vesicle membrane [9]. Using vectors promoting transcyto-
sis in such nonspecific manner can be more widely ap-
plied, especially in combination with nanoparticles or
liposomes, into which large amounts of a drug can be
incorporated [10]. Liposomes seem to be a promising de-
livery system, which enable high cellular uptake and effi-
cient transcytosis across cellular barriers including the
BBB, as their composition can be easily adjusted according
to the properties of targeted cells and tissues [11]. It is
expected that by a proper choice of liposome composition
an efficient transcytosis of liposome entrapped drugs
across the cellular barrier could be achieved [6]. Since the
transport of such liposomes throughout the body cannot
be controlled, they could be in principle produced with
superparamagnetic iron oxide nanoparticles (SPIONs) or a
targeting ligand in order to achieve their accumulation in
desired tissue. SPIONs can be concentrated at a particular
point of the body using external magnetic field [12].

Recent research on perifosine liposomal formulations and
transcellular delivery
In recent work by Orthman et al. [6] the effect of liposome
bilayer properties on cellular uptake and transmembrane
transport of the encapsulated hydrophilic marker calcein
through a barrier formed by epithelial Madin-Darby canine
kidney (MDCK) cells was investigated. A positive correl-
ation between membrane fluidity in the upper part of the
membrane bilayer and transcytosis was found [6]. Similarly,
it has been suggested that also polyunsaturated fatty acids
influence transendothelial transport of cortisol across an
MDCK barrier by inducing changes in membrane fluidity
and somehow affecting tight junction integrity [13]. Later
analysis of the data by Orthman et al. (manuscript in prep-
aration) revealed that among all liposome components the
most pronounced correlation between any liposome com-
ponent and transendothelial calcein delivery was found for
an alkyl phospholipid (1,1-dimethylpiperidin −1-ium-4-yl)
octadecyl phosphate (perifosine) concentration (Figure 1),
namely the transendothelial delivery increased abruptly, in a
nonlinear fashion, for liposomes containing more than 1:1
ratio of perifosine to cholesterol (unpublished data). Perifo-
sine was used in liposomal formulations as a promising can-
didate for tumor treatment [14,15], which, similarly to other
alkyl phospholipids (APLs) (Figure 1), easily incorporates
into cell membranes in substantial amounts and distributes
among intracellular membrane compartments, where it
accumulates and interferes with a wide variety of key
enzymes [16,17]. APLs are metabolically stable analogues of
lysophosphatidyl choline (LPC) and are being developed as
anticancer drugs, already in phase III trials [18]. Adminis-
tration of free (micellar) APLs results in unwanted side
effects, reflected in gastrointestinal toxicity and hemolytic
activity, which limits the application of higher doses of
APLs. To achieve better therapeutic effects of APLs in vivo
with fewer side effects, different liposomal formulations of
APLs have been tested and showed diminished hemolytic
and cytotoxic activity [19]. Molecular structure of APLs
closely resembles the structure of lysolipids, which were
already used in design of thermo-sensitive liposomes for
local release of entrapped drugs by mildly heating affected
tissue, where release should take place [20]. However, a
proper combination of lysolipids and other lipids resulting
in a temperature dependent, burst-like release of majority
of liposome contents, which holds great prospects for appli-
cation in tumor therapy, was achieved only recently [21].

Perifosine liposomal formulations, micelles, and
properties of lysolipids
Alkyl phospholipids are amphiphilic, lysolipid-like mole-
cules and usually form micelles under physiological condi-
tions. However different liposomal formulations of alkyl
phospholipids were successfully prepared [22-25]. This is
possible only in the presence of lipids or other amphiphiles
with complementary molecular shape. Usually cholesterol
fulfills this role and enables the preparation of stable liposo-
mal formulations from alkyl phospholipids and lipids of dif-
ferent chain length and head groups [24]. Among different
alkyl phospholipids, most investigations with liposomal for-
mulations were performed with perifosine. One of key
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Figure 1 Structural formula of pharmaceutically tested alkylphospholipids and lysophosphatidylcholine.
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properties of perifosine containing liposomal formulations,
which is unusual for liposomes composed of bilayer form-
ing lipids, is presence of high amounts of micelles in liposo-
mal samples [26,27]. The content of micelles in perifosine
liposomal formulations decreases with increasing choles-
terol concentration, disappearing roughly at below 1:1 ratio
of perifosine to cholesterol [26,28], similarly as capacity of
perifosine liposomal formulations for transendothelial deliv-
ery. Presence of micelles in perifosine liposomal formula-
tions could be expected, taking into account lipid
monolayer experiments, which showed that alkyl phospho-
lipids, below the critical micellar concentration (CMC), in-
sert progressively into lipid monolayers as monomers from
the aqueous medium, but above CMC, not only monomers
but also groups of monomers (micelles) are transferred
into the monolayers [29]. It was also shown that while alkyl
phospholipid HePC is miscible with POPC, there is high
affinity between HePC and sterols (ergosterol, and choles-
terol) and that maximum condensation is reached at a ratio
of HePC/sterol around 1:1 (mol/mol) [29]. This kind of
behavior is generally known as the condensing effect of
cholesterol towards phospholipids [30,31]. Micelles con-
stitute a reservoir of monomers both for monomer in-
sertion between condensed phospholipids and for
groups of monomer insertion between fluid phospholi-
pids. Since biological membranes are composed of
dynamically condensed domains surrounded by fluid
domains, it has been suggested that, above the CMC, alkyl
phospholipids can insert into both kinds of phases: as
monomers into the condensed phase and as a group of
monomers into the fluid phase [32]. This is also in agree-
ment with fluorescence microspectroscopy data, which
show that lipophilic phospholipid fluorescent probe NBD-
PC, where 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) is
attached to a phosphatidylcholine phospholipid is immedi-
ately transferred into cells after addition of liposomes with
higher than 1:1 ratio of perifosine to cholesterol, whereas
liposomes with lower ratio do not interact with cells
[26,33]. With electron paramagnetic resonance spectros-
copy it was similarly shown that hydrophilic spin probe
encapsulated in liposomes with lower than 1:1 ratio of
perifosine to cholesterol does not enter cells, whereas
starts entering cells immediately after incubation when it
is encapsulated in liposomes with higher than 1:1 ratio of
perifosine to cholesterol [34]. All of the above results can
be explained with the existence of highly mobile phase of
free and micellar phase of perifosine in liposomal formula-
tions, which can interact with cells.

Lysolipids influence endothelial integrity
Lysophosphatidyl choline (LPC) is known to increase
endothelial permeability directly [35], it appears to be a
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proinflamatory mediator, involved in disrupting endothelial
barrier function resulting in inflammatory responses in ves-
sel wall [36]. Proinflammatory mediators bind endothelial
cell surface receptors and activate signaling cues that induce
endothelial cell contraction, resulting in formation of gaps
between endothelial cells, which is a primary cause of
increased endothelial permeability [37,38]. Cell contraction
is achieved by formation of stress fibers, bundles of poly-
merized actin and myosin filaments. These fibers were
shown to be formed in response to many permeability in-
creasing mediators by a monomeric GTPase, RhoA, which
plays a central role in increasing endothelial permeability
[37]. When the choline group is removed from LPC, lyso-
phosphatydic acid (LPA) is produced, which is also an inter-
cellular signaling molecule influencing target cells by acting
on a specific cell-surface receptor [39], activating the RhoA
[40,41], and induces prolonged endothelial barrier dysfunc-
tion accompanied by a reorganization of the F-actin cyto-
skeleton [42]. This indicates that choline group doesn’t play
a significant role in inducing endothelial permeability. How-
ever, LPC is quickly metabolized by lysophospholypase and
LPC-acyltransferase, and therefore cannot be efficiently
used as a medical drug [43]. Therefore alkylphospholipids
(APL, also reffered to as alkyl-lysophospholipids) were
synthesized by replacing the acyl group of lysophosphatidyl-
choline (LPC) with an alkyl group. We hypothesize that
perifosine, as an LPC analog, which also consists of an
18-carbon alkyl chain and a phosphate group is also
capable of inducing endothelial permeability in a similar
manner as LPC and LPA. It has been shown that perifo-
sine retains some physiological effects of LPC, for ex-
ample, both LPC [44,45] and perifosine [46] increase
cytosolic Ca2+.

The nonsignificant role of a helper lipid DOPE
Although a hexagonal phase promoting lipid dioleoyl
phosphatidylethanolamine (DOPE) [47,48], which is
known to be capable of destabilizing endosomal mem-
brane [49–51], was also used in liposomal formulations in
combination with perifosine in order to facilitate transen-
dothelial delivery of liposome encapsulated calcein, no
benefit in transendothelial drug delivery could be attribu-
ted to DOPE. Increased transendothelial delivery was
observed for liposomes containing both DOPE and perifo-
sine as well as for liposomes containing only perifosine [6].
This suggests that either perifosine influences
destabilization of endosomal memebranes to a much
greater extent than DOPE or that endocytosis with
destabilization of endosomal membrane might not be the
primary mode of transendothelial delivery.

Physiological conditions - the role of albumin
Designing an efficient transendothelial drug delivery vector,
one has to take into account the role of plasma albumin. As
it was shown by Huang et al. [35] that, extracellular applica-
tion of LPC, which exceeded the binding capacity of albu-
min, activated RhoA and impaired endothelial integrity.
The presence of albumin in the medium has the effect of
increasing the CMC value by binding lipid molecules and,
hence, reducing the concentration of free monomers in the
medium [52]. We assume that the role of liposomes is simi-
lar to the role of albumin, which acts as a reservoir, grad-
ually releasing albumin bound molecules.
Physiological concentration of albumin ranges from 3.5

to 5 g/dl [53], which corresponds to concentration approxi-
mately 500 to 750 μM. Long chain fatty acids, with acyl
chains from 16 to 20 carbon atoms and up to 4 double
bonds, bind to albumin at 2 strong and 4 weak binding sites
[54]. This results in 1 to 1.5 mM of strong binding sites on
albumin for fatty acid like molecules. Strong fatty acids
binding sites of albumin are usually occupied, since free
fatty acids (FFAs) are one of the most important metabolites
transported by plasma albumin. Although the plasma FFA
concentration is quite variable, the molar ratio of FFA to al-
bumin in the plasma is usually in the range from 0.5 to 2,
rarely exceeding 3 [55]. Albumin inhibits cytotoxic activity
of lysophosphatidyl choline (LPC) by direct binding of LPC
[52]. Extracellular application of LPC, which exceeds the
binding capacity of albumin, was capable of impairing endo-
thelial barrier function [35]. Under physiological conditions
albumin probably binds most of LPC, since its plasma
concentration in normal men was found to be around
130 μM [56]. Since perifosine liposomal formulations con-
tain perifosine micelles in equilibrium with free perifosine,
which exhibits critical micellar concentration (CMC)
around 0.5 mM (unpublished data), we expect that signifi-
cant amount of perifosine remains unbound under physio-
logical conditions and might be capable of compromising
endothelial integrity.
In this article we propose underlying molecular mech-

anism, which should be taken into account in designing
lysolipid containing liposomes as efficient transendothe-
lial delivery vectors in general.

Presentation of the hypothesis
Based on the observation by Orthmann et al. [6], that, in
serum free experiments, perifosine containing liposomal
formulations increase endothelial barrier permeability, we
hypothesize that increased permeability is caused by free
perifosine, which induces changes in endothelial cell shape
resulting in gaps between endothelial cells, allowing pas-
sage of liposomes or their released contents through the
compromised endothelial barrier. Lysolipids in a liposomal
formulation are in dynamic equilibrium, distributed
among liposomes, micelles, and free form (Figure 2). Lipo-
somal formulations therefore represent a reservoir, releas-
ing free lysolipids, which acts on endothelial barrier and
locally increase its permeability for drug loaded liposomes.
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Figure 2 Hypothetical diagram of transendothelial transport of perifosine (red) containing liposomes (blue), with encapsulated
hydrophilic grug (yellow). Increased endothelial permeability is hypothesized to be a consequence of free perifosine action on endothelial cells.
Black arrows indicate a dynamic equilibrium among free perifosine, micelles, and liposomes, all of which constitute a liposomal formulation.
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We hypothesize that lysolipid containing liposomes
could be used for transendothelial drug delivery in general
due to their several unique properties:
1) Just as any other liposomal formulations they can be

used as carriers of encapsulated hydrophilic drugs as
well as lipophilic compounds;

2) They can release lysolipids in a controlled manner by
varying lipid composition of liposomal formulation.
The highest concentration of released lysolipids,
which can compromise endothelial integrity, is
therefore always in vicinity of liposomes with
encapsulated active drug;

3) Leakage of liposome encapsulated drug, due to
liposome destabilization, which is caused by lysolipid
depletion, is greatest at the site of interaction of free
lysolipids with endothelial barrier;

4) Incorporation of superparamagnetic iron oxide
nanoparticles in lysolipid containing liposomes could
help in achieving high concentration of the
liposomes at a particular point of the body using
external magnetic field;

5) Since lysolipid containing liposomes are
thermosensitive, the release of the liposome contents
can be further accelerated by heating the local tissue.

Free lysolipids from liposomal formulations might
also induce transendothelial transport in vivo in a simi-
lar way as in serum free conditions, provided that free
perifosine concentration is high enough to saturate
binding sites on albumin.
Testing of the hypothesis
This hypothesis could be verified by measuring under
in vitro conditions:
� Binding of perifosine and other lysolipids to

lysophospholipid receptor (LPL-R) group;
� Formation of stress fibers and subsequent cell

contraction;
� Possible activation of RhoA, and endothelial barrier

dysfunction by measuring transendothelial resistance
(TEER), before, during, and after the incubation of
liposomal formulations with endothelial cell layer;

� Leakage of liposome contents with respect to
lysolipid depletion from liposomes as a function of
other lipid components of liposomal formulation.

The hypothesis of in vivo nonspecific transendothelial
vector design could be verified by measuring:
� Influence of free lysolipids in presence of albumin, at

higher or lower than albumin concentrations, on
endothelial permeability;

� Binding constant and number of binding sites for the
lysolipid binding to albumin in comparison to LPC
binding;

� Extent of transendothelial delivery of liposome
encapsulated marker by liposomal formulations
made of lysolipids with different CMCs in
comparison to perifosine and LPC, in presence and
absence of albumin;

� Critical micellar concentration (CMC) of perifosine
as compared to other lysolipids and whether
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transendothelial delivery of liposome encapsulated
marker depends on CMC of a lipid used as a
component of the liposomal formulation;

� Appearance of pathogens at the basolateral side.

Implications of the hypothesis
If the hypothesis were true, lysolipid containing liposomal
formulations might be used as endothelial transport vector,
where free lysolipids, as a component of liposomal formula-
tion, would locally compromise endothelial integrity in a
similar manner as lysophosphatidyl choline, thus increasing
the amount of delivered therapeutics into a diseased tissue.
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