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Abstract

Background: The flavonoid pathway is a long-standing and important tool for plant genetics, biochemistry, and
molecular biology. Numerous flavonoid mutants have been identified in Arabidopsis over the past several decades
in a variety of ecotypes. Here we present an analysis of Arabidopsis lines of ecotype Columbia carrying T-DNA
insertions in genes encoding enzymes of the central flavonoid pathway. We also provide a comprehensive
summary of various mutant alleles for these structural genes that have been described in the literature to date in a
wide variety of ecotypes.

Findings: The confirmed knockout lines present easily-scorable phenotypes due to altered pigmentation of the
seed coat (or testa). Knockouts for seven alleles for six flavonoid biosynthetic genes were confirmed by PCR and
characterized by UPLC for altered flavonol content.

Conclusion: Seven mutant lines for six genes of the central flavonoid pathway were characterized in ecotype,
Columbia. These lines represent a useful resource for integrating biochemical and physiological studies with
genomic, transcriptomic, and proteomic data, much of which has been, and continues to be, generated in the
Columbia background.
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Background
Flavonoids are a group of specialized plant metabolites
that play critical roles in plant reproduction, defense
from abiotic and biotic stress and are of growing interest
as health-promoting compounds in human and animal
diets [1-3]. As pigments, they have also figured into nu-
merous seminal biological discoveries including Mendel’s
elucidation of the laws of genetics, McClintock’s discov-
ery of mobile genetic elements, and more recently the
phenomenon of cosuppression, or RNA interference, in
Petunia hybrida (reviewed in [4,5]). The flavonoid path-
way continues to serve as an important experimental
system in a variety of plant species, with studies ranging
from understanding complex transcriptional control to
biochemical structure-function relationships, intra- and
intercellular transport, and the subcellular organization
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of pathways as multi-enzyme complexes [6-9]. Still,
many questions remain about the specific biological tar-
gets of flavonoids in plants and animals [1,10], while en-
gineering the production of specific flavonoids in plants
and microorganisms is still far from straight-forward
[11,12].
Mutations within genes in the flavonoid biosynthetic

pathway of Arabidopsis were described as early as 1971,
easily identified by the transparent testa (tt) phenotype
of the mutant seed coat [13] (Figure 1 and Table 1).
Large-scale mutant screens carried out by Maarten
Koornneef, initially aimed at characterizing the effects of
fast-neutron and X-rays, identified many more flavonoid
biosynthetic and regulatory genes [14,15]. Several other
mutants were subsequently identified by Koornneef and
others, almost all which have now been cloned and
characterized [2]. While this represented an extremely
useful toolset, these EMS and fast neutron induced
mutations were isolated in a variety of ecotypes, primar-
ily Landsberg but also several others, complicating the
tral Ltd. This is an Open Access article distributed under the terms of the
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Figure 1 Seed coat color phenotype of confirmed homozygous
T-DNA lines with insertions disrupting genes involved in
flavonoid biosynthesis. From top center, clockwise seeds are:
Col-0 WT, tt4-13, tt5-3, tt5-2, tt6-3, tt7-5, tt11-11, and ban-4.

Bowerman et al. BMC Research Notes 2012, 5:485 Page 2 of 9
http://www.biomedcentral.com/1756-0500/5/485
analysis of differences between mutants. While differ-
ences between ecotypes are sometimes minimal, morpho-
logical differences between ecotypes can be easily identified
by eye, and research indicates that there are important dif-
ferences between these backgrounds [16-18]. Here we de-
scribe the confirmation and preliminary characterization
of mutant alleles for genes encoding flavonoid enzymes in
Arabidopsis ecotype Columbia-0 (Col-0) that are available
as part of the SALK collection of T-DNA insertion lines
[19]. These lines represent a useful set of tools for analyz-
ing the organization of flavonoid biosynthetic enzymes
and their end products, as well the cellular, physiological
and ecological roles of flavonoids. We also present a com-
pilation of mutant alleles for flavonoid structural gene that
have been described in the literature to date in a variety of
different ecotypes.
Findings
Confirmation of homozygous tt alleles
T-DNA insertion lines in ecotype Col-0 were obtained
from the Arabidopsis Biological Resource Center (ABRC,
Columbus, OH) for genes encoding six of the eight
enzymes of the central flavonoid pathway: chalcone
synthase (CHS, SALK_020583), chalcone isomerase
(CHI, SALK_034145 and CS300857 from the GABI-Kat
project), flavanone 3-hydroxylase (F3H, SALK_113904),
flavonoid 30-hydroxylase (F30H, SALK_053394), anthocya-
nidin synthase (ANS, SALK_073183), and anthocyanidin
reductase (ANR, SALK_040250). These lines were
assigned allele numbers based on the previously-
published alleles for each locus (Table 1). Note that a
mutant allele for dihydroflavonol reductase (DFR) was
recently identified in the Col-0 background that was not
included in this study; no stable mutant allele has yet
been identified in this ecotype for flavonol synthase 1
(FLS1).
DNA was isolated from leaves of each T-DNA line to

screen for lines homozygous for each insertion. The ability
to produce a PCR product from Col-0 wild-type plants
using primers that span the T-DNA insertion site
(Figure 2) was used to identify the presence of an intact
gene. The absence of an amplicon using the same primers
for T-DNA lines indicates that the insertion is present,
while products generated using one T-DNA-specific and
one gene-specific primer indicate the presence of a
T-DNA insertion in the gene of interest. The results illu-
strated in Figure 3 identify each line as containing a
homozygous T-DNA insertion in the gene of interest,
most within the respective open reading frames, with the
exception of alleles of CHI (SALK_034145) and FLSI
(AJ588535), which contain insertions within the promo-
ters, and CHI (CS300857) and ANR (SALK_040250) with
insertion in introns. It should be noted that these lines
may contain additional T-DNA insertions at other sites of
the genome; it has not yet been determined whether that
is the case for any of the lines described here.
End product and pigmentation analyses of tt alleles
Hydrolyzed flavonol extracts were analyzed by Ultra
Performance Liquid Chromatography (UPLC) to provide
phenotypic evidence of the gene disruptions identified
by PCR. Five of the lines, tt4-13, tt5-2, tt5-3, tt6-3 and
fls1-3, had no detectable levels of kaempferol or quer-
cetin, the two major flavonol aglycones found in Arabi-
dopsis (Figure 4). All five alleles affect enzymes
upstream of flavonol production in the flavonoid bio-
synthetic pathway. As in previous analyses of the tt7-1
allele in the Landsberg (Ler) background, which lacks
the F30H enzyme, tt7-5 in Col-0 also accumulated high
levels of kaempferol but no detectable quercetin [46].
This is consistent with the catalytic role of F30H in
converting dihydrokaempferol to dihydroquercetin. The
tt11-11 and ban-4 mutants contain insertions in the
ANS and ANR genes, respectively. Both lines accumu-
lated flavonols at levels comparable to wild type but
displayed other phenotypes characteristic of defects in
the respective genes. The tt11-11 seeds exhibited an
intermediate tt phenotype (Figure 1), but adult plants
were devoid of red pigmentation, consistent with an
absence of anthocyanins, while ban-4 exhibited a red
seed coat in immature seeds and a darker black seed
coat in fully desiccated seeds, as described previously
for ban-1 [41].



Table 1 Summary of enzyme-encoding tt alleles described to date

Gene Allele1 Line number2 Ecotype3 Mutagen4 First described

chalcone synthase
(CHS)at5g13930

tt4-1 85 Ler EMS [14,20]

tt4-2 2YY6 Col EMS [21-23]

tt4-3 C1 Col Carbon ions [24]

tt4-4 C2 Col Carbon ions

tt4-5 UV01 Ler γ radiation [25]

tt4-6 UV25 Ler EMS

tt4-7 UV113 Ler γ radiation

tt4-8 UV118a Ler γ radiation

tt4-9 38G1R Ler γ radiation

tt4-10 Est-1 EMS [26]

tt4-11 DFW34 Ws-2 T-DNA [27]

tt4-12 CS429127 / GK-304D03 Col T-DNA [28]

tt4-13 SALK_0205835 Col-0 T-DNA [29,30]

tt4-14 through 21 zinc finger nucleases [31]

chalcone isomerase
(CHI)at3g55120

tt5-1 86 EMS [14]

tt5-2 CS300857/ GK-176H03 Col T-DNA [28,30]; this report

tt5-3 SALK_034145 Col-0 T-DNA This report

flavanone 3-hydroxylase
(F3H)at3g51240

tt6-1 87 Ler EMS [14,32]

f3h-2::En Col Transposon [32]

f3h-3::En Col Transposon

f3h-4f Col Transposon

f3h-5f Col Transposon

tt6-2 CS427992 / GK-292E08 Col-0 T-DNA [28]

tt6-3 SALK_1139045 Col-0 T-DNA [33]

tt6-4 SALK_023664 Col-0 T-DNA Leaky allele –
unpublished results

flavonoid 3'-hydroxylase
(F3'H)at5g07990

tt7-1 88 Ler EMS [14,34]

tt7-2 Col-7 T-DNA [35]

tt7-3 CS433473 / GK-349F05 Col-0 T-DNA [28,30]

tt7-4 DJI11 Ws-2 T-DNA [27]

tt7-5 SALK_053394 Col-0 T-DNA [36]

dihydroflavonol
4-reductase
(DFR) at5g42800

tt3-1 84 Ler EMS [37]

tt3-2 CS428258 / GK-295C10 Col-0 T-DNA [28]

tt3-3 Est-1 fast neutrons [26]

GK-212G01 Col-0 T-DNA Some segregants
have pale brown
seeds, none yellow

SALK_099848 Col-0 T-DNA Does not have phenotype

anthocyanidin synthase
(ANS/LDOX)at4g22880

tt11-1 Debeaujon and Koornneef,
unpublished

tt11-2 Ler EMS [38]

tds4-1 Ws-4 T-DNA but not
tagged (INRA)

[35]

tds4-2 SALK_028793 Col-0 T-DNA [39]

tds4-3 CSHL GT9767 Ler Gene trap

tt17 Est-1 Fast neutrons [26]
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Table 1 Summary of enzyme-encoding tt alleles described to date (Continued)

tt18-1 AB084467 Col Carbon ions [40]

tt18-2 AB084468 Col Carbon ions

tt18-3 Col Carbon ions

tt11-11 (tds4-4) SALK_073183 Col-0 T-DNA [39]; this report.

anthocyanidin reductase
(ANR/BAN) at1g61720

ban-1 Ws-2 T-DNA [41]

ban-2 F36 En-1 unknown [42]

ban-3 F52 En-1 unknown

ban-4 SALK_0402505 Col-0 T-DNA This report

flavonol synthase 1
(FLS1)at5g08640

fls1-1 fls-1::En Col Transposon [32,43]

fls-2f Col Transposon [32]

fls-3f Col Transposon

fls-4d Col Transposon

fls1-2 RIKEN PST16145 No-0 T-DNA [44]

fls1-3 INRA FLAG_533E06 (AJ588535/EGT283) Ws T-DNA [45]

SALK_076420 Col-0 T-DNA Recessive embryo lethal
potentially due to
disruption of adjacent
divergently-transcribed
gene [45]

FLS2at5g63580 fls2-1 SALK_023235 Col-0 T-DNA [45]

fls2-2 GK-429B10 Col-0 T-DNA [44]

FLS3at5g63590 fls3-1 SALK_050041 Col-0 T-DNA [44,45]

FLS4at5g63595 fls4-1 SALK_002309 Col-0 T-DNA

FLS5at5g63600 fls5-1 CS430396 / GK-317E12 Col-0 T-DNA

FLS6at5g43935 fls6-1 SALK_0038795 Col-0 T-DNA
1 Alleles in bold are described in the current study.
2 GK = GABI-Kat.
3Standard ecotype abbreviations, as follows: Landsberg erecta (Ler); Columbia accession number 0 (Col-0) or accession unknown (Col), ; Enkheim (En-1); Estland
(Est-1); Wassilewskija (Ws-2).
4 ethyl methanesulfonate (EMS).
5 independently-derived homozygote already available at ABRC.
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Conclusions
The flavonoid mutants described in this report represent a
useful toolset for the study of many aspects of plant me-
tabolism, cell biology, and physiology. The flavonoid path-
way provides a unique model system for studying
metabolic pathways as it has been well-characterized in a
variety of model organisms and is essential for a wide
range of cellular and physiological processes. Mutations
for genes encoding many of the enzymes now exist in a
uniform genetic background. While this communication
focuses on flavonoid biosynthetic enzymes, mutant alleles
exist for genes involved in mediating other aspects of fla-
vonoid metabolism, including transcriptional regulation of
gene expression and modification and cellular transport of
pathway end products [47,48].
The flavonoid enzymes disrupted by T-DNA insertions

have been hypothesized to participate in metabolic chan-
neling via protein-protein interactions [7,49]. These muta-
tions, all within the same genetic background, could
greatly enhance our understanding of the regulation and
dynamics of this channeling, which has broad reaching
implications across metabolic research areas. The CHS
mutant allele, tt4-13, has already been used by our group
and others to further probe the involvement of this
pathway in modulating the distribution of auxin and ethyl-
ene within Arabidopsis seedling roots [7,29,36,50], to
characterize the distribution of flux among branch path-
ways of flavonoid metabolism [45], and to identify mole-
cules that promote pollen fertilization in Arabidopsis [51].
The CHI allele, tt5-3, has been used in a metabolic profil-
ing analysis of the response to UV light [52], whereas tt5-2
was used to demonstrate a requirement for this CHI gene,
among flavonoid genes, for flavonol synthesis in pollen
[30]. The flavanone 3-hydroxylase mutant, tt6-3, has been
used to characterize the biochemical activities of Arabi-
dopsis F3H and Sorghum FNS [33,53], while the flavonoid
30-hydroxylase line, tt7-5, was used by our group in the
auxin-ethylene study [36], and tt11-11, was already used
several years ago to show that TDS4 is allelic to tt18 (now
renamed tt11 per the findings of [38]) and encodes



Figure 2 Schematic of homozygous T-DNA insertion lines.
Boxes indicate exons, solid lines indicate introns and 50 leader
sequence, and dashed lines indicate genomic sequence. Insertion
sites are indicated by black triangles. The arrows above the insertion
indicate the direction of the T-DNA left-border primer sequence
used for mapping the insertion sites. The fls1 line is described in
Owens et al. [45]. Genes are chalcone synthase (CHS), chalcone
isomerase (CHI), flavanone 3 hydroxylase (F3H), flavonoid 30

hydroxylase (F30H), flavonol synthase (FLS1), anthocyanidin synthase
(ANS), and anthocyanidin reductase (ANR).

Figure 3 PCR confirmation of homozygous insertion lines for
described tt alleles. T-DNA insertions were confirmed using T-DNA
and gene-specific primers, while intact genes were confirmed using
two gene-specific primers spanning the mapped T-DNA insertion
site. Homozygous lines are indicated by the presence of a T-DNA
insertion but not an intact gene.
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LDOX/ANS. The F3H and LDOX lines, tt6-3 and tt11-11,
have been used to demonstrate the utility of a novel meta-
bolic profiling method for intact seed [54].
The collection of tt mutants presented here represent a

means to several ends. As our understanding of the roles
flavonoid compounds play in human health evolve, so too
may our need to develop new crop lines to deliver increased
amounts of these compounds in our diet. In addition, the
flavonoid pigmentation compounds are of great horticul-
tural importance. For these two reasons alone a thorough
understanding of the dynamic metabolic processes involved
in flavonoid production is important, but there are broader
benefits to many areas of cellular and plant biology.

Methods
Analysis of flavonol profiles
Arabidopsis (Columbia ecotype) wild-type and transgenic
seeds were surface-sterilized as described previously [25].
Approximately 5 mg of seeds were dispersed on agar
plates containing Murashige and Skoog salts with 1% su-
crose and incubated 2 d in the dark at 4°C. The seeds
were then grown on the surface of the agar medium
under continuous white light (100 μE m-2 s-1) at 21°C as
previously described [55]. Flavonols were extracted from
frozen tissue by grinding 20 seedlings in 200 μl 1% acetic
acid in 80% methanol and incubating overnight at 4°C.
The samples were clarified by centrifugation twice at
13,000 rpm, 4°C for 15 min each time. The samples were



Figure 4 (See legend on next page.)
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(See figure on previous page.)
Figure 4 UPLC analysis of flavonol aglycone profiles in T-DNA insertion lines. A) UPLC traces of hydrolyzed extracts prepared from
5-day-old seedlings, with arrows indicating the retention times of the flavonols, quercetin (Q) and kaempferol (K). B) Comparison of kaempferol
and quercetin levels determined from integrated peak areas.
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hydrolyzed as described in Burbulis et al. [21], followed
by the addition of an equal volume of 100% methanol
and centrifugation as before.
Flavonols in wild-type and transgenic seedlings were

profiled using a Waters Acquity UPLC system with a
UPLC phenyl C18 column (2.1 mm x 100 mm, Waters)
and a linear elution gradient from 100% solvent A (0.1%
formic acid in water) to 40% solvent B (0.1% formic acid
in acetonitrile) over 13 min at 4°C, modified from
Yonekura-Sakakibara [56]. Chromatograms were col-
lected at 320 nm and 365 nm.

Confirmation of knockouts by T-DNA insertion
Lines for each tt allele in Col-0 were ordered from the Ara-
bidopsis Biological Resource Center (ABRC; The Ohio
Table 2 Primers used for confirmation of homozygous lines

Allele Primer sequence (5'-30)

CHS: tt4-13 Intact Gene

(SALK_020583)

T-DNA insertion

CHI: tt5-2 Intact Gene

(CS300857)

T-DNA insertion

CHI: tt5-3 Intact Gene

(SALK_034145)

T-DNA insertion

F3H: tt6-3 Intact Gene

(SALK_113904)

T-DNA insertion

F30H: tt7-5 Intact Gene

(SALK_053394)

T-DNA insertion

ANS: tt11-11 Intact Gene

(SALK_073183)

T-DNA insertion

ANR: ban-4 Intact Gene

(SALK_040250)

T-DNA insertion
State University) and bred to homozygosity from a segre-
gating population. The mapped locations of each T-DNA
insertion were created using the T-DNA flanking sequence
identified via the ABRC sequence viewer (Figure 2). To
confirm that each line was homozygous, genomic DNA
was extracted from one large leaf from each plant accord-
ing to Edwards et al. [57] with slight modifications. Gen-
omic DNA from Col-0 wild-type plants of approximately
the same age was also extracted in the same manner to
serve as a control template. Extracted genomic DNA was
resuspended overnight in 100 μl ddH2O. PCR was per-
formed using 1 to 2 μl of each sample with the primers
listed in Table 2 in a total volume of 10–20 μl. PCR pro-
ducts were analyzed by agarose gel electrophoresis. Seeds
for the tt5-3, tt7-5, and tt11-11 homozygous lines have been
GATCACTCATGTCGTCTTCTG

AGGGCCAGGCGGTGAAG

GATCACTCATGTCGTCTTCTG

TTAGAGAGGAACGCTGTGC

ATGTCTTCATCCAACGCCTG

GTTCTCTTTGGCTAGTTTTTC

ATGTCTTCATCCAACGCCTG

CGAAAGTAAGAATTAGAGAATAC

AGGGCCAGGCGGTGAAG

CGAAAGTAAGAATTAGAGAATAC TGATAAACTTCTCAAACGCAC

TGGTAGGTAGCTAGCGAC

AACACACCGCGCCTAGC

TGGTAGGTAGCTAGCGAC

AGGGCCAGGCGGTGAAG

CAGCGGATTGGAATTTGAAC

CAGCTGTGAACATGTTCTG

GGACCGCTTGCTGCAACT

CAGCTGTGAACATGTTCTG

AGAGTTGAGAGTCTAGC

GCAAAAGTCCGTGGAG

AGAGTTGAGAGTCTAGC

TGGTTCACGTAGTGGGCCATCG

TGGACCAGACTCTTAC

AGACCGGTCACATGC

AGACCGGTCACATGC

TGGTTCACGTAGTGGGCCATCG
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deposited with the ABRC; homozygous lines are available
at the ABRC for the other four lines through the SALK
Confirmed T-DNA Project.

Abbreviations
ANR: anthocyanidin reductase; ANS: anthocyanidin synthase; BAN: Banyuls;
CHI: chalcone isomerase; CHS: chalcone synthase; F30H: flavonoid 30-
hydroxylase; FLS: flavonol synthase; F3H: flavanone 3-hydroxylase;
tt: transparent testa; UPLC: Ultra performance liquid chromatography.
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