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Abstract

two classes.

Background: The distinction between the effective siRNAs and the ineffective ones is in high demand for gene
knockout technology. To design effective siRNAs, many approaches have been proposed. Those approaches attempt
to classify the siRNAs into effective and ineffective classes but they are difficult to decide the boundary between these

Findings: Here, we try to split effective and ineffective siRNAs into many smaller subclasses by RMP-MiC(the relative
mean probabilities of siRNAs with the mini-clusters algorithm). The relative mean probabilities of siRNAs are the
modified arithmetic mean value of three probabilities, which come from three Markov chain of effective siRNAs. The
mini-clusters algorithm is a modified version of micro-cluster algorithm.

Conclusions: When the RMP-MiC was applied to the experimental siRNAs, the result shows that all effective siRNAs
can be identified correctly, and no more than 9% ineffective siRNAs are misidentified as effective ones. We observed
that the efficiency of those misidentified ineffective siRNAs exceed 70%, which is very closed to the used efficiency
threshold. From the analysis of the siRNAs data, we suggest that the mini-clusters algorithm with relative mean
probabilities can provide new insights to the applications for distinguishing effective siRNAs from ineffective ones.

Findings

RNA interference (RNAI) is a cellular process for sequence
specific destruction of mRNA [1]. The broad mechanis-
tic details for the pathway have been largely characterized.
Long double-stranded RNAs duplex or hairpin precursors
are cleaved into small interfering RNAs (siRNAs) by the
ribonuclease III enzyme Dicer. The typical siRNAs have a
19-nucleotide paired region followed by a 2-nucleotide 3’
overhang [2]. The siRNAs are used to initiate RNAi [3-6].
Therefore, the distinguishing the effective siRNAs from
the ineffective ones is in high demand for gene knock-
out technology. In order to design effective siRNAs, many
computational approaches have been proposed [7-20].
Some approaches focus on finding the common features
of effective siRNAs, though they initially and intuitively
provide guidelines for siRNAs design, are far from satis-
fied due to low sensitivity and specificity [8,18]. The other
approaches are motivated by statistical learning theory,
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attempt to classify the siRNAs into effective and ineffec-
tive classes. Although those two-class classifiers provide a
promising way to screen potentially effective siRNAs, it is
difficult to decide the boundary between the two classes.
Here, we use the set of effective siRNAs to estimate
distributions of three Markov chains, where the order
of three Markov chain are 1, 2 and 3, respectively. Each
siRNA obtain three probabilities from the distributions of
three Markov chains. Based on three probabilities of siR-
NAs, we introduce a robust feature of siRNAs, the relative
mean probabilities, which is the modified arithmetic mean
value of these three probabilities. It should be noticed that
the siRNAs with similar relative mean probabilities have
same efficacy(effective/ineffective) usually, most relative
mean probabilities of effective siRNAs exceed most inef-
fective ones. However, there is no clear boundary between
these two classes, so we give up the attempt of dichotomy.
We try to split these two classes into many smaller effec-
tive or ineffective subclasses, respectively. Thus, we dis-
tinguish effective siRNAs from the ineffective ones by
a mini-clusters algorithm, which adopted from [21](see
Materials and methods). By RMP-MiC(the relative mean
probabilities with the mini-clusters), all effective siRNAs
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can be identified correctly, and no more than than 9% inef-
fective siRNAs are misidentified as effective siRNAs. We
observed that the efficiency of those misidentified ineffec-
tive siRNAs exceed 70%, which is very closed to the used
efficiency threshold.

Methods

Estimating distributions of siRNAs

The siRNAs can be represented as an 19-tuple of vector.
x; = (X1, %2, -+ ,%i19) is the i-th siRNA where x;; rep-
resents its j-th nucleotide. Effective siRNAs are used to
estimate Qy,, where Qy, is distribution of a /i-order Markov
chain, 4 equals 1, 2 and 3, respectively. Q(i) is probabil-
ity of the i-th siRNA in Qj. We use Q,(i)(h = 1,2,3) to
construct Qg4 (i), where

Onliy — QW + Q) + Q3D
[Qi()T + [Q()T + Q)T
19
Qui) = Prxia - xa) [ an(ih,
s=h+1

an(§) = Prxis|xii—py, - - 5 %i(j—1))-

If Qy(i) exceed zero, [Qy(i)] is 1, otherwise [Qy(i)] is
zero. Q4(i) name as relative mean probabilities of x;. It
can be noticed that the siRNAs with similar relative mean
probabilities have alike efficiency usually.

Mini-clusters algorithm
Based on the relative mean probabilities of siRNAs, we
distinguish effective siRNAs from the ineffective ones by
a mini-clusters algorithm, which adopted from [21], a
commonly used micro-cluster algorithm. It is sketched as
below.

Define the distance between i-th and j-th siRNAs as

dn(i, ) =/ (Qu(i) — Qu()*.

We put the closest two elements in a cluster. In sub-
sequent steps, we examine the two closest elements not
already in a cluster. If either or both of these are closer
to some element within a cluster, we put each element in
the cluster to which it is closest, otherwise, we form a new
cluster. Repeat this step until all siRNAs have been put
into a mini-cluster.

For the siRNAs in testing set, we consider that their
efficiency are unknown. In the process of testing the sen-
sitivity and specificity, a mini-cluster is considered as
effective if it has an effective siRNAs, and be considered
as ineffective if all siRNAs are ineffective, otherwise its
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efficacy is uncertain. We denote effective, ineffective and
uncertain mini-clusters as

A]:AZ; ot ;Au; Au+1rAu+2; T yAa; Bl! BZ: et ’Bb;

respectively. Define the distance of A; and B; as

dy(A;,B)) = min dj(u,v).

u€A;,veB;
If
dn(An, Bj) = izrlI}Qi{{ . dn(A;, B)),

the efficacy of B; is regarded as that of A;1. In other words,
each uncertain mini-cluster is merged into the nearest
determined ones.

Availability

Testing the performance of mini-clusters

To test the performance of RMP-MiC, it was firstly applied
to a simulation data. The sequences of simulation data
set belong to two groups X and Y, each of them con-
tains 5 nucleotides. In order to simplify the problem,
we assume the nucleotides are generated from different
1-order Markov chain, that is, the relative mean probabil-
ities of sequences equal the probabilities of their 1-order
Markov chain. For X, the probabilities of U base and C
base at position 1 are 0.75 and 0.25, conditional probabili-
ties of position 2 are

Pr(AlU) = 0.75, Pr(U|U) = 0.25, Pr(G|C) =1

and others are zero. At 3-5 position, we assume that all
conditional probabilities are 0.25. For each sequence of Y,
we assume that "U’ base at position 1 and ’A’ base at posi-
tion 5 or 'C’ base at position 1 and ‘G’ base at position
5 can not appear at the same time, nucleotides are ran-
dom at other positions. An illustrative example within the
simulation data is shown in Table 1, which consists of 17
sequences. These 17 sequences belong to two groups X
and Y. The two groups are of size 10 and 7, respectively.
The relative mean probabilities of these 17 sequences are
shown in Table 1. For comparison, we also applied K-
mean with Euclidean to cluster all sequences into 2 cluster,
where the distance between two sequences are Euclidean
distance of their mean probabilities. The clustering results
by two methods are shown in Table 1.

In Table 1, RMP-MiC grouped these 17 sequences into 4
mini-clusters, sequences of each mini-clusters come from
the same group. The Euclidean algorithm were clusters
7 sequences of cluster 1 incorrectly grouped in cluster
2. The reason may be that Euclidean distance takes the
difference between data points directly, it may be overly
sensitive to the magnitude of changes To further test these
methods, we applied it to a larger data set containing 1,000
samples. Results were similar to those observed for the
smaller data set(data not shown).
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Table 1 List of simulation data and clustering results by two algorithm

Results
Group X Sequences Pq P> P3 P4 Ps Q4) RMP-MiC K-mean
al UAAUC 0.75 0.75 0.25 0.25 0.25 0.0088 1 1
a2 UACCG 0.75 0.75 0.25 0.25 0.25 0.0088 1 1
a3 UAGAA 0.75 0.75 0.25 0.25 0.25 0.0088 1 1
a4 UuccG 0.75 0.25 025 0.25 0.25 0.0029 2 2
a5 UUGAA 0.75 0.25 0.25 0.25 0.25 0.0029 2 2
a6 uuuGU 0.75 0.25 025 0.25 0.25 0.0029 2 2
a’ CGAUC 0.25 1 0.25 0.25 0.25 0.0039 3 2
a8 CGCCG 0.25 1 0.25 0.25 0.25 0.0039 3 2
a9 CGGAA 0.25 1 0.25 0.25 0.25 0.0039 3 2
alo CGUGU 0.25 1 0.25 0.25 0.25 0.0039 3 2
Group Y
b1 AACGA 0 0 0.25 0.25 0.25 0 4 2
b2 AUGGA 0 0 0.25 0.25 0.25 0 4 2
b3 UCAGC 0.75 0 0.25 0.25 0.25 0 4 2
b4 UGUUC 0.75 0 025 0.25 0.25 0 4 2
b5 UCCUG 0.75 0 025 0.25 0.25 0 4 2
b6 CCAAA 0.25 0 0.25 0.25 0.25 0 4 2
b7 CCUAC 0.25 0 0.25 0.25 0.25 0 4 2

Py is the probabilities of the leftmost nucleotides. P;(i = 2,3,4,5) is conditional probabilities of the i-th position. Q(4) is the the relative mean probabilities of sequences.

Identifying results of the experimental siRNAs

The data set can be downloaded from http://www.bioinf.
seu.edu.cn/siRNA/Supplementary/index.htm. It collects
3589 experimental validated siRNAs from 9 publications
[7,10-12,22-26]. The efficiency threshold of siRNA to be
effective is 80%. According to this threshold, the data set
has 582 effective siRNAs and 3007 ineffective siRNAs.

To validate the performance of Q4(i) with mini-
clusters, we apply them to data set of experimen-
tal siRNAs, where Qu(i) are estimated by all effec-
tive siRNAs. The identifying results are summarized in
Table 2. In fact, all effective siRNAs are correctly iden-
tified and only 264 ineffective siRNAs are misidenti-
fied into effective siRNAs by Qs(i) with mini-cluster.
It should be noticed that when ineffective siRNAs are

misidentified into effective siRNAs, its efficiency exceeds
70% mostly.

For comparison, we applied the Q;()(h = 1,2,3)
with mini-clusters to the same data. The K-mean with
Euclidean was also applied to cluster all sequences into
2 cluster, where the distance between two sequences are
Euclidean distance of their Q4(i), the number of clus-
ters is the same as the number of mini-clusters of Q4(i).
The results are also summarized in Table 2. These results
show that all effective siRNAs are correctly identified
and 610, 534 and 100 ineffective siRNAs are misidenti-
fied with effective siRNAs by Q1 (i), Q2(i) and Q3(i) with
mini-cluster, respectively.

For comparison, The K-mean with Euclidean was also
applied to cluster all sequences into 2 cluster, where the

Table 2 The identifying results of siRNAs by five different algorithms

Algorithm Feature Total Sensitivity (%) Specificity (%)
Mini-cluster Qi () 1192 1 48.83
Mini-cluster Q2() 1116 1 5215
Mini-cluster Q3 (1) 682 1 85.34
Mini-cluster Q4(1) 846 1 68.79
K-means Q4(1) 1588 1 36.65

The total number is the number of the identified effective siRNAs. Sensitivity, the number of effective siRNAs/582. Specificity, the number of effective siRNAs/total

number of cluster members.
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distance between two sequences are Euclidean distance
of their Q4(i), the number of clusters is the same as the
number of mini-clusters of Q4(i). The results are also
summarized in Table 2. These result shows that all effec-
tive siRNAs are correctly identified but 1006 ineffective
siRNAs are misidentified with effective siRNAs.

To test the sensitivity and specificity of Q4 (i) with mini-
clusters, 80% effective siRNAs are chosen as training data
set. The siRNAs of training data set are used to estimate
Q4(i). To assure each siRNA may be in test set, we con-
struct 1,000 different training data set. The results show
that only 13 effective siRNAs are incorrectly identified
and 516 ineffective siRNAs are misidentified with effective
siRNAs , where the number of the misidentified effective
and ineffective siRNAs are the mean values acquired from
averaging across each training set. The result shows that
Q4 (i) with mini-clusters is reliable for identifying effec-
tive siRNAs. However, when we use Q3(i) to substitute
Q4(i), only 18% effective siRNAs of training data set can
identify correctly. The reason may be that many Qs(i) of
effective siRNAs of training data set become zero. It can
result in which these effective siRNAs are misidentified to
ineffective siRNAs. However, even if Q3(i) of these effec-
tive siRNAs are zero but their Q; (i) and Q3 (i) may be very
large, so their Q4 (i) are also different with ineffective siR-
NAs. Thus, they may construct new mini-clusters or enter
into effective mini-clusters.

Secondly, we randomly generate 1,0000 simulation siR-
NAs. A new data set of siRNAs are formed by these
1,0000 simulation siRNAs and 3587 experimental siR-
NAs. By Qa(i) with mini-clusters, these 1,3587 siRNAs
are put into different mini-clusters, where 1587 simulation
siRNAs are put into effective mini-clusters, Q4 (i) are esti-
mated by all effective experimental siRNAs. The efficiency
of these 1587 simulation siRNAs are de novo validated
by a web-server RFRCDB-siRNA [27], which is avail-
able at http://www. bioinf.seu.edu.cn/siRNA/index.htm.
By the web-server, 1536 simulation siRNAs are identified
as effective. The result shows that effective siRNAs should
have specific features at some positions, and Q4(i) can
incarnate these specific features.

Identifying results of the shRNAs

To systematically analyze the interplay between
nucleotide composition, shRNA processing, and bio-
logic activity, Christof Fellmann et al transduced
the entire Sensor library into human HEK293T and
chicken ERC cells, generated and quantified small RNA
libraries designed to represent shRNA intermediates
after major biogenesis steps, which contains 18,720
shRNAs [28]. The efficiency threshold of shRNA to be
effective is that its score exceed 10. According to this
threshold, the data set has 453 effective siRNAs and
18267 ineffective siRNAs. The data set of shRNAs can

Page 4 of 5

be downloaded from: http://www.ncbinlm.nih.gov/
pmc/articles/PMC3130540/?tool=pubmed.

To validate the performance of Q4(i) with mini-clusters
to distinguish effective shRNAg, it is applied to data set
of shRNAs, where Q4(i) are estimated by all effective
shRNAs. The identifying results shows that all effec-
tive shRNAs are correctly identified and only 1446 inef-
fective shRNAs are misidentified into effective shRNAs
by Q4(i) with mini-cluster. It should be noticed that
when ineffective shRNAs are misidentified into effective
shRNAs, their efficiency are very closed to the effective
threshold.

Comparison to existing design algorithms

To compare our results to existing siRNA-based design
tools, we obtained the top predictions for transcripts
using three different algorithms [17-19] and compared
them to the 50 highest scoring Sensor-derived shRNAs
for gene. Strikingly, exceed 70% of scoring shRNAs
were not identified in the top 50 predictions of any
algorithm. While such false negatives, in principle,
may have little practical significance, the majority of
algorithm-predicted shRNAs did not score in the Sen-
sor assay, closely resembling their low validation rate
in empirical testing. Together, these results demonstrate
that siRNA algorithms are poor at predicting potent
shRNAs [29] and underscore the value of the Sensor
approach.

Requirements

Since effective siRNAs have specific nucleotides at some
position, it is reasonable to use relative mean probabili-
ties as their feature indicator. However, effective siRNAs
may have different relative mean probabilities, but the
mini-clusters algorithm place siRNAs with similar relative
mean probabilities in the same mini-clusters.

In fact, relative mean probabilities can be viewed as
specific probabilities of siRNAs, so the absolute value of
their logarithm can be regarded as entropies of siRNAs.
Since siRNAs with similar relative mean probabilities
are in the same mini-clusters, the deviance of efficiency
of siRNAs can be regarded as the difference in their
entropies.

Conclusions

From the analysis of the siRNAs data, we demonstrate
that mini-clusters algorithm using Q4 (i) are appropriate
for analyzing siRNAs data. Its success indicates that an
effective algorithms for analyzing biological data must be
based on an understanding of the biological nature of the
experimental data.
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