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Abstract

Background: Heterotrimeric G-proteins, consisting of three subunits Ga, G and Gy are present in most eukaryotes
and mediate signaling in numerous biological processes. In plants, Gy subunits were shown to provide functional
selectivity to G-proteins. Three unconventional Gy subunits were recently reported in Arabidopsis, rice and soybean
but no structural analysis has been reported so far. Their relationship with conventional Gy subunits and
taxonomical distribution has not been yet demonstrated.

Results: After an extensive similarity search through plant genomes, transcriptomes and proteomes we assembled
over 200 non-redundant proteins related to the known Gy subunits. Structural analysis of these sequences revealed
that most of them lack the obligatory C-terminal prenylation motif (CaaX). According to their C-terminal structures
we classified the plant Gy subunits into three distinct types. Type A consists of Gy subunits with a putative
prenylation motif. Type B subunits lack a prenylation motif and do not have any cysteine residues in the C-terminal
region, while type C subunits contain an extended C-terminal domain highly enriched with cysteines. Comparative

Arabidopsis and its generalization to other plant species.

analysis of C-terminal domains of the proteins, intron-exon arrangement of the corresponding genes and
phylogenetic studies suggested a common origin of all plant Gy subunits.

Conclusion: Phylogenetic analyses suggest that types C and B most probably originated independently from type
A ancestors. We speculate on a potential mechanism used by those Gy subunits lacking isoprenylation motifs to
anchor the GRy dimer to the plasma membrane and propose a new flexible nomenclature for plant Gy subunits.
Finally, in the light of our new classification, we give a word of caution about the interpretation of Gy research in

Keywords: Heterotrimeric G-proteins, Signal transduction, Prenylation, S-acylation

Background

Heterotrimeric G-proteins, consisting of three distinct
subunits: Ga, Gp and Gy, constitute one of the most
important signal transduction systems in eukaryotes.
According to the classic paradigm, ligand-bound G-
protein coupled receptors catalyze the exchange of GDP
for GTP on the Ga subunit, resulting in activation of
the heterotrimer and dissociation of the two functional
elements, the Ga subunit and the GPy dimer. Ga and
GPy independently interact with multiple downstream
effectors mediating specific signal transduction pathways
until the intrinsic GTPase activity of the Ga subunit
hydrolyzes GTP to GDP, which increases Ga affinity for
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the GBy dimer, resulting in re-association of the hetero-
trimer at the receptor [1-3].

Plant heterotrimeric G-proteins are involved in mul-
tiple physiological processes [4-8]; however the available
set of subunits is limited. In the fully sequenced Arabi-
dopsis genome only one gene is present for the Ga and
Gp subunits [5,9], while three genes are now known for
Gy subunits [10-13]. With single Ga and Gf subunits, it
is logical to assume that Gy is solely responsible for
providing functional selectivity to the heterotrimer, as
has been proven for Arabidopsis [10,14,15]. In some
plants two to four canonical Ga and G subunits have
been identified [16-18], however their functional specifi-
city is yet to be studied. At the same time, in one of
these species, soybean, the set of Gy subunits has been
expanded to 10 [19].
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The Gy subunit is an essential part of the heterotrimer,
binding tightly to G and anchoring the GPy dimer to
the plasma membrane [1,20-23]. Most of the known Gy
subunits are relatively small proteins of about 8—11 kDa
[11,12,24-26]. They contain a conserved prenylation
signal at their C-termini, which is a target for post-
translational prenylation [1,3,22,27,28]. This modifica-
tion considered to be crucial for anchoring the Gpy
dimer to the plasma membrane and for the entire het-
erotrimer function [29-32]. Recently, a novel Gy subunit
has been described in Arabidopsis, AGG3, containing a
large cysteine-rich C-terminus, increasing the size of the
protein to approximately 25 kDa (251 amino acids) [10].
On the other hand, one of the reported rice Gy subunits,
RGG2, does not contain a C-terminal prenylation signal
[26] and similar variants were recently reported in soy-
bean [19]. To the best of our knowledge, such severe
deviations from the canonical structure have not been
reported for any animal or fungal Gy subunits.

It was found that the protein structure of the Gy var-
iants could differ dramatically within a single species
[10,19,26], however the extent of these proteins’ diversity
in plants and their phylogenetic relationships have not
yet been studied. In this study we have identified over
200 non-redundant sequences of Gy subunits from seed
bearing plants and analyzed their structure and phylo-
genetic relationships. Based on their C-terminal amino
acid sequences three distinct types were revealed. A
robust phylogenetic analysis suggested a common origin
for the three structural types within the plant kingdom.
A new flexible nomenclature for plant Gy subunits is
suggested.

Results

Identification of plant Gy subunits

Gy subunits have been characterized only in four flower-
ing plant species: Arabidopsis [10-12], rice [26], garden
pea [18] and soybean [19]. In order to identify addition-
al Gy sequences we queried the “nucleotide collection
(nr/nt)”, “expressed sequence tags (est)”, “high through-
put genomic sequences (HTGS)” and “whole-genome
shotgun reads (wgs)” databases in GeneBank using the
BLAST (tblastn) algorithm [33] with the Arabidopsis
and rice Gy subunit protein sequences as queries. The
published PsGyl and PsGy2 sequences from garden pea
show very low overall similarity to Gy subunits from
other species and lack the most of highly conserved resi-
dues including the DPLL motif present in all established
plant and animal Gy subunits. At the same time we
found one pea EST showing high similarity to Gy-
encoding ESTs from other plants and particularly to
other leguminous species, suggesting that the published
PsGyl and PsGy2 have a different origin and therefore
we did not include them in this study. In rice, in
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addition to the two reported Gys, RGG1 and RGG2, we
have identified three other proteins sharing high similar-
ity with the Arabidopsis Gy subunit AGG3. Two of
them, GRAIN SIZE 3 (GS3) and DENSE AND ERECT
PANICLE1 (DEPI), were previously characterized but
not identified as Gy subunits [34-36]. These proteins
were recently reclassified as Gy subunits due to their
high similarity with the experimentally proven Arabidop-
sis AGG3 subunit [10,37].

To exhaust the screening, newly found sequences from
different plant taxa were translated into protein
sequences and used as queries in additional BLAST
searches. In total, over 300 non-redundant sequences
representing plant Gy subunits from land plants were
obtained with more than one subunit found in most spe-
cies. After discarding short and incomplete sequences,
around 200 full-length or near full-length sequences
were selected for analysis.

Structural analysis reveals three types of plant Gy
proteins

Initial inspection of aligned putative Gy proteins
revealed that the central part of the molecule was the
most conserved, while N-terminal and C-terminal
regions were variable. High variability in the N-termini
has also been reported for animal Gy subunits [38], but
C-terminal variability seems to be a unique characteristic
of plant Gy subunits. Importantly, the variability
observed in the C-termini was not random and three
distinct types could be clearly identified. Based on their
C-terminal amino acids, plant Gy subunits can be
divided into three structural types A, B and C. A sche-
matic representation of the types is shown on Figure 1A.
The central domain retains high sequence similarity in
all three types indicating a close relationship and sug-
gesting a conserved function for the domain. Multiple
sequence alignments of the central domain and C-
terminal region of types A and B are shown in
Figure 1B, while only the central domain and a short
fragment of the C-terminus of type C is shown in the
Figure. The N-termini of the proteins were too variable
to be unambiguously aligned, while the C-terminal re-
gion of type C subunits was too long to be presented in
the Figure.

Type A Gy subunits are small proteins (approximately
100 amino acids) containing the conserved C-terminal
CaaX motif, known as a prenylation motif, which is a
characteristic of all non-plant and conventional plant Gy
subunits. This type is similar to all other eukaryotic Gy
subunits reported so far and therefore could be consid-
ered as the archetypal heterotrimeric Gy subunits. Con-
sidering the presence of the putative prenylation motif,
we have defined type A Gy subunits as short proteins
with a potential site for post-translational prenylation.
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Figure 1 General structure and conserved domains of plant Gy subunits. (A) Schematic representation of the three types of plant Gy
subunits. (B) WeblLogo of the conserved central and C-terminal domains of Gy subunits. Eudicot and monocot type B sequences were separated
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Representatives of type A were found in gymnosperms
and flowering plants. Notably, in rosid species there are
at least two variants of this type related to the Arabidop-
sis AGG1 and AGG2 proteins. At the same time most
asterid species have only one Gy subunit of this type.

The second Gy subunit type, type B, has a substantial
level of amino acid sequence similarity to the type A Gy
subunits, however, lacks the C-terminal CaaX box.
Moreover, there is not a single cysteine residue in the
proximity of the C-terminus. This type was found only
in flowering plants, but not in gymnosperms. Surpris-
ingly, no representatives of this type were identified in
the fully sequenced Arabidopsis genome or in other in-
tensively studied Brassicaceae genera, such as Brassica
and Raphanus. Nevertheless, this gene was found in
Carica papaya which belongs to the same order Brassi-
cales, but to a different family Caricaceae, suggesting
that the gene was probably lost in the Brassicaceae
ancestor. The consensus C-terminus among eudicot
sequences of this type is SRxxKRWI, while in
monocot species the C-terminal consensus is KGSDFS
(Figure 1B). Since none of these proteins contains
cysteines in the C-terminal region, we have designated
this type as non-prenylated Gy subunits.

The third type, type C, accommodates Gy subunits
with relatively large (~70-350 amino acids) C-terminal
extensions. Despite the pronounced variability in the C-
terminus, sequences of this type share a considerable
level of similarity with type A and B Gy subunits in the
central region (Figure 1B). Importantly, they contain all,
but one, of the conserved residues forming hydrogen
bonds and hydrophobic contacts in the interaction be-
tween Gy and Gf (amino acids L/V12, E25, S36, D/E51,
P52, L53, L/I54 in Figure 1B). These residues are also
conserved in mammalian Gys [39]. Physical interaction
with the Gp subunit, plasma membrane localization and
genetic analysis in Arabidopsis confirmed the type C
representative, AGG3, as a bona fide Gy subunit [10,13].
The C-terminal regions of type C Gy subunits have an
extremely high content of cysteine residues (19 to 38%)
and their lengths are quite variable even between closely
related species (Additional file 1: Table S1). The cysteine
residues are distributed randomly along the region with-
out common recognizable domains. Repeats of 5-10
amino acids are relatively common for the cysteine rich
region. For instance in cotton (Gossypium raimondii)
twelve tandem repeats with sound identity can be found,
suggesting recent amplification events (Additional file 1:
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Figure S1). Alignment of Arabidopsis and Brassica rapa
sequences revealed at least 6 indels ranging from 3 to 51
bp (Additional file 1: Figure S2). Conifers and cycads
contain the shortest cysteine-rich regions, being of simi-
lar size even among species from different families
(Additional file 1: Table S1).

Phylogenetic relationships within plant Gy subunits

To investigate the generic relationships between the four
identified types of plant Gy subunits we performed
phylogenetic analysis. As mentioned before, the central
part of the protein was the most conserved in size and
amino acid sequence. The N-termini varied in size from
roughly 10 to 75 amino acids, while the C-termini varied
even more dramatically, from 20 to 350 amino acids, ef-
fectively preventing any reasonable alignment within
these two regions. Therefore only the conserved central
domain was used for phylogenetic analysis. The protein
sequences were aligned using the CLUSTAL-OMEGA
software [40] and adjusted manually. We built and com-
pared unrooted trees using different algorithms provided
in the PHYLIP 3.66 package [41] as well as maximum
likelihood algorithm using the PhyLM 3.0 package
[42,43]. The obtained trees exhibited some variation in
topology and low overall statistical support (bootstrap
values for PHYLIP algorithms and approximate likeli-
hood ratio test for branches (aLRT) for PhyLM)). This
was not an unexpected outcome since we used fairly
short sequences. Nonetheless, most of the trees showed
significant statistical support for major clusters corre-
sponding to the proposed structural types. Therefore, al-
though limited, very important phylogenetic information
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could be retrieved. Parsimony and maximum likelihood
trees displayed very similar topology and provided the
best fit for the currently established plant phylogeny
within the sub-trees of type A, B and C [44]. For demon-
stration purposes we selected the parsimony tree
(Figure 2) due to its higher statistical support for the
designated types. The parsimonious algorithm separated
type C sequences in 100% of bootstrap trees. Type B
sequences were sub-clustered within type A sequences
with significant (75%) bootstrap support (Figure 2).

The phylogenetic analysis, thus, suggests that type B
derived from type A sometime after flowering plants
diverged from gymnosperms, but prior to the origin of
monocots. This scenario corresponds well with our data
mining results showing presence of type B only in flow-
ering plants. Types A and C seem to originate before
seed bearing plants diverged; in accordance, these types
are present in gymnosperms and flowering plants. Sev-
eral relatively recent duplication events took place
within the types A and C resulting in the modern day di-
versity observed in plant Gy subunits.

Gy gene structure comparison between plants and other
eukaryotes

Plant and animal Gy subunits share limited sequence
similarity even at the protein level [10,11,39]. In order to
obtain a different insight on the relationship among
plant Gy subunit genes and to establish a degree of re-
latedness between plant and other eukaryotic Gy genes,
we compared intron-exon structures of Gy genes from
several species representing different eukaryotic domains
(Additional file 1: Figure S3). The intron-exon structure

Monocots
Eudicots
Gymnospems

CIType A
[ 1TypeB
[ 1TypeC

Figure 2 Phylogenetic relationships of the three types of plant Gy subunits. Consensus tree representing 1000 unrooted bootstrap trees
generated by protein parsimony algorithm; percentage shows statistically significant support for clusters corresponding to the structural types.
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further supported the closer relationship between all
plant Gy subunits. All tested type A and B Gy genes
have four exons and three introns within the coding re-
gion. The two middle exons were almost identical in
size, reflecting the conservation of the central domain.
The first and fourth exons demonstrated more variabil-
ity, while the size of the three introns varied greatly.
Type C genes have five exons, the first four of which are
similar to the exons of type A and B genes, while the
additional fifth exon encodes most of the cysteine-rich
tail. Projection of exon boundaries on the protein se-
quence displayed identical positions for all tested plant
Gy genes. Noticeably, Gy genes from other eukaryotes
differ from those of plants and each other in relation to
intron numbers and positions. Gy genes from some
fungi (Saccharomyces cerevisiae, Ashbya gossypii), the
primitive eukaryote Naegleria gruberi and some metazo-
ans such as several species of Drosophila and sea anem-
one Nematostella vectensis do not have introns (data not
shown). On the other hand, stramenopiles (Phytophthora
infestans, Ectocarpus siliculosus), fungi (Aspergillus cla-
vatus, Laccaria bicolor), the social amoeba Dictyostelium
discoideum and most animals have 1-3 introns in variable
positions (Additional file 1: Figure S3). All functional
human Gy genes have one intron in the same pos-
ition [25]. Two human genes are presented in Additional
file 1: Figure S3. At the same time several species
from taxa related to vertebrates (such as Hemichordata,
Cephalochordata and Echinodermata) have Gy genes with
and without introns. These observations provide add-
itional evidence supporting the close relationship within
plant Gy genes, while demonstrate that exon-intron
arrangements in other eukaryotic Gy genes were variable
even within closely related groups. Importantly, one
intron position (projected to be approximately in the
middle of the protein sequence) was common for the
majority of Gy genes with introns (Additional file 1:
Figure S3), uniting an incredibly diverse range of eukar-
yotes, including plants, animals, fungi, amoebazoans
and stramenopiles.

C-terminus variability in eukaryotic Gy subunits
The presence of a CaaX box and specifically the cysteine
residue in the fourth position from the protein end, pro-
viding a possibility for protein prenylation, is considered
a prominent feature of all known Gy subunits [1,29,45-
47]. However, we found that plant Gy subunits often
lack the canonical prenylation motif. Only type A, in-
variably has a CaaX motif, while type B totally lacks
cysteines at the C-terminus and only approximately half
of the available type C proteins contain a CaaX-like
motif.

To study the C-termini of Gy subunits from different
eukaryotes we screened the available sequence databases
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using a number of established Gy sequences as a query
for BLAST searches. In total ~150 Gy subunits from sev-
eral eukaryotic groups were compared. For each
eukaryotic group a consensus of ~20 C-terminal amino
acids was obtained using the majority rule, when ‘major-
ity’ is determined by over 50% presence; highly variable
positions were substituted with x’ (Table 1). To avoid
over-representation of a single group, such as vertebrates
in the consensus for animals, we first produced prelim-
inary consensus sequences for all phyla and then joined
them producing the final consensus for the kingdom.
The results reflect an abundance of valine, isoleucine,
methionine and leucine in the two terminal positions,
while third position from the end was found to be vari-
able in all eukaryotes, except for plants, where it is pre-
dominantly occupied by tryptophan (Table 1).
Interestingly, we found that one of the most primitive
single cell eukaryote, Naegleria gruberi, has two Gy sub-
units. One of them contains classical CaaX box, while
the second protein has no prenylation motif. Unlike in
plants, where non-prenylated Gy subunits are an abun-
dant type, Naegleria’s non-prenylated variant is an iso-
lated case. It has the highest sequence similarity with its
paralog containing the CaaX motif, suggesting relatively
recent divergence of the two proteins.

Discussion

The importance of heterotrimeric G-proteins in plant
cell signalling is difficult to overestimate, being involved
in multiple developmental processes [5,8-10,14,48-50]
and innate immunity [6,7,51-56]. Most of the available
studies have used Arabidopsis and rice mutants lacking
either Ga or G, each encoded by a single gene in these
species. In contrast, Gy is encoded by several genes in
both species and their important role for the correct
function of the heterotrimer has been recently demon-
strated [10,14,15,29,37]. In this study we have analysed
over 200 Gy subunits from nearly 100 seed bearing plant
species and found striking differences in their C-termini
with many subunits lacking the ‘consensus’ C-terminal
prenylation motif, CaaX.

Table 1 C-terminal amino acids of Gy subunits from
different eukaryotes

Species / Group C-terminal amino acids

Animals VxxPxSENPFKEKKXGCxIL
Fungi VDKXEDPYAPxxxGGCCxVM
Amoebozoa FXGEXNPWxxNQxGGCCXVI
Stramenopiles NDxPNxWQQSxQGGGGEXIL
Plants type A XWDRWFEGPQDxxGCRCWIL
Naegleria gruberi FE249419 SDPTNPYLNPPKDGGCCMIM
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Prenylated and non-prenylated plant Gy subunits

It has been established in animal studies and also
demonstrated in plants, that Gy anchors the Gf subunit
to the plasma membrane [1,3,10-12,21,22,27,28,32]. This
is achieved by strongly binding Gf using a coiled-coil
interaction and targeting the dimer to the plasma mem-
brane via post-translational modification of the Gy C-
terminus. Classically, post-translational processing of the
Gy subunits includes prenylation and proteolytic cleav-
age of the last three amino acids [30-32]. Prenylation of
protein C-termini in eukaryotes is catalysed by three
types of protein prenyltransferases. Protein farnesyl-
transferase (PFT) transfers a farnesyl group to the cyst-
eine residue of a CaaX motif, where “a” is preferably an
aliphatic amino acid and “X” is preferably, but not ne-
cessarily, methionine, glutamine, alanine, cysteine, or
serine. Protein geranylgeranyltransferase type I (PGGT I)
catalyses the transfer of a geranylgeranyl moiety to the
cysteine residue of a CaaX motif, where “X” is preferably
leucine or isoleucine. Finally, protein geranylgeranyl-
transferase type II (PGGT II) is highly specific for RAB-
GTPases and requires an escort protein, therefore, it
does not participate in prenylation of Gy subunits
[57,58]. Thus, the presence of the CaaX motif is consid-
ered to be compulsory for Gy subunits.

We found that in plants only type A and about half of
type C Gy subunits possess a putative CaaX motif, while
type B proteins do not have it. Even though the plant
CaaX motif is similar to that of other eukaryotes in gen-
eral terms, it has a distinct difference. In plants, the first
aliphatic amino acid position of the CaaX box is fre-
quently occupied with an aromatic amino acid trypto-
phan, which is otherwise never found in this position or
even in the proximity of the prenylated cysteine in any
other eukaryotes. This deviation from the mammalian
pattern raises questions about the possible prenylation
of those plant Gy subunits containing a CWIL motif and
the ability of non-prenylated types (B and C) to provide
membrane localization for the Gy dimer.

It has been reported that two of the Arabidopsis Gy
subunits, AGG1 and AGG2, are prenylated in vivo
[27,28]. Both proteins are type A subunits and contain
conventional CaaX motifs, (CLIL and CSIL respectively),
being rather exceptions to the type A consensus C-
termini (CWIL). On the other hand, since the first ali-
phatic amino acid is solvent exposed and is not involved
in any hydrophobic interactions, as are the two terminal
amino acids, its position in CaaX could in theory accom-
modate any amino acid [59]. This theoretical rule is sup-
ported by the high variability observed in this position in
all eukaryotes (Table 1). In fact, a human Gy5 subunit
with an artificially added CWIL C-terminal motif was
prenylated in transfected cells, but proteolytic cleavage
of the three terminal amino acids was suppressed [60].
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Therefore it is possible that despite the presence of tryp-
tophan in place of the first aliphatic residue in CaaX
plant Gy subunits, they could still be prenylated. Inter-
estingly, it has been recently established that Arabidopsis
PGGT 1 exhibits more specificity for CaaX motifs con-
taining leucine in the terminal position than PGGT I
enzymes from metazoans and yeast [61]. We found that
most type A subunits terminate in leucine (Figure 1B,
Table 1). This may imply that type A Gy subunits are
mostly modified with a geranylgeranyl moiety. The pre-
ferential prenylation of Arabidopsis AGG1 and AGG2
subunits by PGGT I has been experimentally demon-
strated [27,28]. On the other hand, it was shown that
Arabidopsis AGG2 that ends in CGCSIL is prenylated
on the —4 cysteine (4th position from the end) while is
also S-acylated on the -6 cysteine, demonstrating a dual
lipidation [27,28]. This feature, two cysteines separated
by an amino acid, is conserved in type A sequences
(Figure 1B, Table 1), suggesting that S-acylation of the
-6 cysteine could be a common modification for plant
Gy subunits. The presence of aromatic and basic amino
acids has been confirmed to promote S-acylation of a
nearby cysteine [62,63]. Therefore, the tryptophan
present in the most common C-terminus of type A
(CRCWIL) could serve as a facilitator of S-acylation of
the -6 cysteine, assuming that it is not cleaved after pre-
nylation of the second cysteine.

The plant Gy subunits without prenylation motifs,
namely type B and half of type C subunits, cannot be
prenylated by PFT or PGGT I Nevertheless, they can
still be functional Gy subunits anchoring the GBy dimer
to the membrane. A prominent characteristic of all these
sequences is an overrepresentation of positively charged
amino acids (arginine, lysine) combined with aromatic
residues (tryptophan, phenylalanine) and highly hydro-
phobic residues (isoleucine and leucine) at the C-
terminus. Such amino acid combination is also found at
the C-terminus of a number of membrane proteins and
it has been established that these amino acids form an
amphipathic a-helix, able to anchor the proteins to the
plasma membrane [64-68]. We therefore hypothesize
that a similar structure could be formed at the C-
terminus of plant Gy subunits providing affinity for the
plasma membrane. A representative of type B, rice
RGG2, was detected in the plasma membrane fraction,
despite absence of a prenylation motif [26]. At the same
time YFP-fused type B subunits from soybean were also
detected on the plasma membrane [19]. Additionally, in
the Arabidopsis mutant plp lacking the common PFT/
PGGT I a-subunit and, hence, incapable of prenylation,
AGG2 was shown to form stable membrane association,
assumingly due to a polybasic C-terminal block [28]. No
doubt, further experimental data is required to un-
equivocally establish the intracellular topology of the
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type B Gy subunits and post-translational modification
patterns of plant Gy subunits in general. Nevertheless,
we would like to draw attention to the possibility that
plant’s unique C-terminal structure enables Gy subunits
to target the plasma membrane regardless of the preny-
lation status, which would greatly distinguish them from
their animal counterparts.

A new nomenclature for plant Gy subunits

We believe that it will be very advantageous in the fu-
ture to unequivocally identify the different Gy subunits
as members of one of the three types defined in this re-
port, since it could point to specific post-translational
protein processing and possibly have important func-
tional implications. For this reason we propose to use
the type as an integral part of the Gy subunits’ name for
future studies. We realize the limits of our analysis and
predict that new types of Gy subunits could be discov-
ered in the future. For instance our preliminary studies
revealed a new form (type?) of Gy related proteins in
primitive land plants (Trusov, Botella unpublished data).
Therefore, we emphasize that the new proposed nomen-
clature will easily accommodate newly discovered types,
by using the sequential letter code (A, B, C, D, E and so
on). It is also important to consider the common direc-
tions for plant nomenclature widely accepted by plant
biologists to use the two first letters to represent a spe-
cies name. In this way the three existing Arabidopsis Gy
subunits could be referred as “AtGGA1”, referring to
Arabidopsis thaliana G-protein Gamma subunit type A,
number 1, (currently named “AGG1” [11]), “AtGGA2”
(currently named “AGG2” [12]) and “AtGGC1” (cur-
rently named “AGG3”[10]). Similarly, for rice the no-
menclature would apply as “OsGGA1” (currently named
“RGG1” [26]), “OsGGB1” (currently named “RGG2”
[26]), “OsGGC1” (currently named “GS3” [34]),
“OsGGC2” (AACV01018633.1 ) and “OsGGC3” (cur-
rently named “DEP1” [35]).

Conclusion

We would like to make a short note to propose some
caution on how to interpret past and future functional
research into the Arabidopsis AtGGA1l and AtGGA2
subunits (previously AGG1 and AGG2). It is important
to keep in mind that both subunits belong to type A and
that no type B subunit is present in Arabidopsis; there-
fore generalizations to other plants species are inher-
ently risky. It is possible that AtGGA1l and AtGGA2
have evolved to take up some or all of the functions that
type B subunits have in other species. It is thus import-
ant to study type A subunits in other species since they
could have different or more restricted roles than those
observed for AtGGA1 and AtGGAZ2. In addition, it is

Page 7 of 9

also important to establish the role of type B subunits,
for which we still don’t have any functional information.

Methods

Database searches

BLAST searches against the Genebank databases were
run using full-length AGG1 (AF283673), AGG2
(AF347077), AGG3 (AAT85756), RGG1 (AB120662) and
RGG2 (AP005647) protein sequences known to be plant
Gy subunits. The soybean proteins [19] were published
later than our original search was done. From the signifi-
cant hits a subset of approximately 500 sequences was
extracted, covering over 100 land plants species. The
low score sequences were also considered and analyzed
if conserved motifs (DPLL/I and CaaX* (asterisk
represent the termination signal)) were identified. ESTs
presenting parts of a putative gene were assembled
by eye using SED.exe program from VOSTORG pack-
age [69]. Sequences containing identical or almost iden-
tical reading frames were considered redundant and
reduced to one. Sequences containing full length or
nearly full length reading frames were selected for fur-
ther analysis.

Phylogenetic analysis

Protein sequence alignment was done using CLUSTAL-
OMEGA [40]. The program is provided on EMBL-EBI
web site http://www.ebi.ac.uk. Manual alignments were
done using program SED.exe and analysis of inversions
and repeats was done with dotmap.exe provided in pack-
age VOSTORG [69].

Phylogenetic analysis was performed using package
PHYLIP 3.66 [41]. The package was used as described in
manual provided with the programs. Namely, the seq-
boot.exe with default settings was used to generate file
with 1000 bootstrapped data sets. 100 bootstraps were
used for preliminary analyses to generate phylogenetic
trees with the following algorithms: Protein/nucleotide
Sequence Parsimony, Protein/nucleotide maximum like-
lihood, Neighbor-Joining, UPGMA, Fitch-Margoliash.
All programs were used at default settings except for re-
setting for multiple data sets. 1000 bootstraps were gen-
erated for final parsimonious trees reconstructions.
Package PhyML-aBayes [42,43] was also used to gener-
ate maximum likelihood tree using different substitution
models for stationary amino-acid frequencies provided
with the program.

Protein weblogos for Figure 1B were designed using
Berkley University website http://weblogo.berkeley.edu/
logo.cgi [70].

Phylogenetic trees were visualized using program Fig-
Tree v1.3.1. http://tree.bio.ed.ac.uk/software/figtree/.
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