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Abstract

Background: Human ß-defensins are a family of antimicrobial peptides located at the mucosal surface. Both
sequence multi-site variations (MSV) and copy-number variants (CNV) of the defensin-encoding genes are
associated with increased risk for various diseases, including cancer and inflammatory conditions such as psoriasis
and acute pancreatitis. In a case–control study, we investigated the association between MSV in DEFB104 as well as
defensin gene (DEF) cluster copy number (CN), and pancreatic ductal adenocarcinoma (PDAC) and chronic
pancreatitis (CP).

Results: Two groups of PDAC (N=70) and CP (N=60) patients were compared to matched healthy control groups
CARLA1 (N=232) and CARLA2 (N=160), respectively. Four DEFB104 MSV were haplotyped by PCR, cloning and
sequencing. DEF cluster CN was determined by multiplex ligation-dependent probe amplification.
Neither the PDAC nor the CP cohorts show significant differences in the DEFB104 haplotype distribution compared
to the respective control groups CARLA1 and CARLA2, respectively.
The diploid DEF cluster CN exhibit a significantly different distribution between PDAC and CARLA1 (Fisher’s exact
test P=0.027), but not between CP and CARLA2 (P=0.867).

Conclusion: Different DEF cluster b CN distribution between PDAC patients and healthy controls indicate a
potential protective effect of higher CNs against the disease.

Keywords: Defensins, Single nucleotide variants, Copy number variation, Chronic pancreatitis, Pancreatic ductal
adenocarcinoma
Background
Pancreatitis, a necroinflammatory condition of the pan-
creas, has both acute and chronic manifestations. In the
recent past, our understanding of the pathogenesis of pan-
creatic inflammation has improved considerably. Whereas
acute pancreatitis is known to be initiated by premature
activation of digestive enzymes within the exocrine com-
ponent of the pancreas, chronic pancreatitis (CP) is char-
acterized by progressive and irreversible damage to both
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the exocrine and endocrine components of the pancreas.
CP is believed to result from repeated overt or silent epi-
sodes of acute pancreatitis [1]. The key histopathologic
features of CP are pancreatic fibrosis, acinar atrophy,
chronic inflammation, and distorted and blocked ducts
[2]. The annual incidence of CP in industrialized countries
ranges from 3.5 to 10 per 100,000. Alcohol abuse is the
major risk factor for CP in Western countries, although
other mechanisms such as mutations, pancreatic duct ob-
struction (caused by strictures), hypertriglyceridemia,
hypercalcemia, and autoimmunity also have been impli-
cated [3]. Since patients with CP have an approximately
13-fold higher risk to develop pancreatic cancer than the
general population, the identification of disease-related
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genes is essential for understanding the transformation
from benign to malignant disorder, and for developing
strategies for early diagnosis [4]. Pancreatic cancer (pan-
creatic ductal adenocarcinoma, PDAC), is the fourth most
common cause of cancer-related death in industrialized
countries and characterized by extremely low survival
rates [5,6]. Currently, no imaging procedure can reliably
differentiate between benign and malignant tumors in CP
patients.
Defensins are small cysteine-rich peptides that can be

classified as either α-defensin or β-defensin, depending
upon the arrangement of six critical cysteine residues.
Defensins are synthesized as inactive preproproteins
that become post-translationally activated. They are
produced in the respiratory, gastrointestinal and geni-
tourinary tracts, the skin, and by circulating blood
cells. Defensins are considered a first line of defence
against invading pathogens. Of all defensins, the ß-
defensins comprise the largest group, with around 40
members encoded in the human genome. Most of the
genes are located in defensin (DEF) clusters on chro-
mosomes 8 and 20. In addition to their antimicrobial
activity, β-defensins have multifaceted functions in in-
nate and adaptive immunity [7]. The β-defensins are
expressed in most epithelial cells and are found to be
impaired in many inflammatory diseases, including
Crohn's disease, psoriasis, pulmonary inflammation,
and periodontal disease [8-13].
Except for DEFB1, all ß-defensin genes (DEFB4,

DEFB103-109) harbour a high degree of copy-number
variation (CNV). Copy numbers (CN) range from 2 to
13 copies per diploid genome and show large inter-genic
concordance because the respective genes bunch in a
Figure 1 Genomic organization of the human defensin (DEF) gene clu
copy, except a CNV region encompassing DEFA1A3 and DEFT1p (2 to 13 co
CN-variable (2 to 12 copies). Black triangle (zoomed): DEFB104 gene with th
α-defensin; B: DEFB, ß-defensin; ex = exon, p = pseudogene.
~200 kb CNV region, called ‘DEF cluster b’ (Figure 1)
[14-20]. In principle, both CNV and sequence variation
within a given copy can contribute to clinical phenotypes
through variation in gene expression [21]. So far, this
has only been demonstrated experimentally for DEFB4
but most probably applies to all other DEF genes with
variable CN as well [17]. Anyhow, the analysis of genes
located in CNV regions poses two methodological chal-
lenges: First, conventional genotyping of single nucleo-
tide variations (SNV) cannot resolve whether a variation
occurs between paralogs affected by CNV [22]. To ac-
knowledge this problem, we will address SNVs within
the copy number variable DEFB cluster as ‘multi-site
variation’ (MSV). Second, the assessment of CNs is also
complicated by methodological difficulties. Although
widely used, qPCR has questionable reliability so that
tightly controlled paralog ratio tests or multiplex
ligation-dependent probe amplification (MLPA) have
been recommended instead [23-28].
Disease association studies of the CN-variable ß-defen-

sin genes are scarce. Hitherto reported associations
mostly either lack replication or are conflicting [21,29-
32]. No CN association, but a skewed distribution of
MSV haplotypes, was identified in two prostate cancer
groups [33]. The corresponding haplotypes comprise
four MSV (rs17843871, rs2680507, rs17843872 and
rs4259430) around exon 1 of DEFB104. While haplo-
types GGGC and CAAT were significantly under-
represented among patients, GAAT and GAAC were sig-
nificantly over-represented. Moreover, high CNs of the
ß-defensin cluster (≥9 copies per diploid genome) were
found to be less frequent among prostate cancer patients
than among healthy controls.
sters on chromosome 8p23.1. DEF cluster a is essentially single-
pies per diploid genome), whereas DEF cluster b as a whole is
e four multi site variations (MSV) investigated in this study. A: DEFA,
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The aim of the present study was to search for associa-
tions between MSV-based DEFB104 haplotypes and DEF
cluster b CNs on the one hand, and pancreatic ductal
adenocarcinoma and chronic pancreatitis on the other.
Results
DEFB104 haplotypes are not associated with PDAC or CP
Two independent cohorts of patients with pancreatic
ductal adenocarcinoma (PDAC) and chronic pancreatitis
(CP) were investigated in comparison with complemen-
tary age- and sex-matched healthy control groups [34]
named CARLA1 and CARLA2, respectively (Table 1 and
Methods section).
The haplotypes of four exon 1 MSV in DEFB104

(Figure 1) were determined by PCR on the genomic
DNAs from the four cohorts as well as from a com-
mercially available pool of ~100 anonymous human
DNAs. The PCR products were pooled by cohorts in
equimolar amounts and cloned. Subsequently, clones
were sequenced, haplotypes were inferred from the se-
quence traces and the haplotype fractions within cohorts
were calculated (Table 2). Since these fractions do not
take into account the effects of post-PCR pooling, how-
ever, they cannot be compared directly between patients
and controls using standard statistical tests. Instead, the
expected haplotype distribution under the null hypoth-
esis had to be simulated as previously described [33].
An omnibus χ2 test based upon these simulations yielded
a p value of 0.239 for the comparison of PDAC and
CARLA1, and of 0.129 for CP and CARLA2, respectively,
suggesting that there were no significant differences
between the DEFB104 haplotype distributions among
cases and controls.

DEF cluster b CN distribution differs between PDAC and
controls
Diploid DEF cluster b CNs were determined by MLPA for
65, 232, 63 and 161 individuals from the PDAC, CARLA1,
CP and CARLA2 groups, respectively (Additional files 1, 2,
3, 4 and 5). The median CN was 4 copies per diploid
Table 1 Description of study groups

Group PDAC CARLA1 CP CARLA2

Number (%) male 37 (53%) 123 (53%) 49 (82%) 133 (83%)

female 33 (47%) 109 (47%) 11 (18%) 27 (17%)

total 70 232 60 160

Age (years) minimum 41 46 36 45

maximum 77 77 74 74

mean 63.8 65.0 50.2 52.5

median 67.0 66.8 49.0 50.0

PDAC: pancreatic ductal adenocarcinoma; CP: chronic pancreatitis; CARLA1,
CARLA2: healthy control groups which were age- and sex-matched to PDAC
and CP, respectively.
genome for all groups. CNs ranged from 2 to 7 in the
PDAC group (mean: 4.22) and from 3 to 7 in the CP group
(mean: 4.57). In both control groups, CNs were between 2
and 8 copies (mean CARLA1: 4.42, CARLA2: 4.55).
Differences in mean CN between cases and control
groups were not statistically significant (PDAC vs
CARLA1: 0.20, P=0.151; CP vs CARLA2: 0.02, P=0.915)
(Additional file 6).
The diploid CN distributions within the four cohorts

are depicted in Figure 2. Application of Fisher’s exact
test revealed that these distributions differed significantly
between PDAC and CARLA1 (P=0.027), but not be-
tween CP and CARLA2 (P=0.867). The two control
groups also did not differ significantly from each other
(P=0.580).

Discussion
Defensins are expressed in the pancreas although it is
not entirely clear which cells actually produce and se-
crete which of these diverse peptides for which purpose.
In pancreatic juice, only HNP-3 (α-defensin 3, encoded
by DEFA3) has been detected but mRNA expression of
ß-defensins has also been demonstrated in pancreatic
tissue [35]. The important role of defensins in the innate
immune system due to their antimicrobial, chemotactic
and regulatory functions, and their involvement in in-
flammatory processes vindicates the assumption that
defensins are also involved in the pathogenesis of pan-
creatitis and pancreatic cancer.
Pancreatitis may develop as a chronic disease after

long-term alcohol abuse. Chronic pancreatitis is a strong
risk factor for pancreatic cancer but alcohol does not ap-
pear to be an independent causative agent for the dis-
ease [36,37]. Interestingly, acute and chronic pancreatic
inflammation occurs as an extra-intestinal co-morbidity
of inflammatory bowel disease for which an involvement
of defensins is also discussed [27,38,39]. Furthermore, in
view of the microbicidal properties of defensins, it
appears noteworthy that a link between infectious dis-
eases and pancreatic cancer has been drawn both for
viral diseases (mumps, HBV infections) and bacterial
infections (Helicobacter pylori) [37,40].
In the present study, both sequence variants in a ß-

defensin gene and CN variants of the cluster containing
this gene were investigated for a putative association
with PDAC and CP. As haplotyping of the CN-variable
DEFB104 gene was performed in pools, haplotypes can-
not be assigned to the individual diploid CN for DEF
cluster b. Respectively, both features had to be tested for
association independently. All data from the patient
groups were compared to age- and sex-matched healthy
controls (CARLA1 and CARLA2).
Earlier, we have demonstrated association between

DEFB104 haplotypes and sporadic prostate cancer as



Table 2 Haplotype frequencies (fh) as derived for DEFB104 MSV rs17843871, rs2680507, rs17843872 and rs4259430 by
pooled PCR/cloning and Sanger sequencing

Haplotype Frequency as determined by pooled PCR/sequencing Group comparison

PDAC CARLA1 CP CARLA2 Human genomic
pool

PDAC vs CARLA1 CP vs CARLA2

No. clones fh No. clones fh No. clones fh No. clones fh No. clones fh P* P*

GAGC 224 0.40 286 0.34 310 0.41 391 0.34 413 0.38 0.160 0.061

GGGC 152 0.27 207 0.25 200 0.27 277 0.24 233 0.21 0.540 0.444

GAAT 39 0.07 92 0.11 92 0.12 153 0.13 106 0.10 0.109 0.747

CAGT 60 0.11 65 0.08 63 0.08 91 0.08 62 0.06 0.232 0.813

CAAT 29 0.05 48 0.06 27 0.04 76 0.07 47 0.04 0.773 0.123

CAGC 15 0.03 36 0.04 23 0.03 56 0.05 59 0.05 0.316 0.298

GAGT 22 0.04 28 0.03 9 0.01 41 0.04 54 0.05 0.721 0.079

GAAC 5 0.01 22 0.03 7 0.01 28 0.02 12 0.01 0.136 0.194

GGAT 3 0.01 22 0.03 2 <0.01 14 0.01 27 0.02 0.059 0.217

GGGT 7 0.01 10 0.01 2 <0.01 9 0.01 25 0.02 0.961 0.430

CGGC 6 0.01 5 0.01 2 <0.01 12 0.01 22 0.02 0.547 0.297

CGGT 0 0.00 5 0.01 1 <0.01 3 <0.01 0 0.00 0.163 0.720

GGAC 0 0.00 4 <0.01 0 0.00 0 0.00 6 0.01 0.222 n.a.

CAAC 1 <0.01 2 <0.01 0 0.00 2 <0.01 0 0.00 0.781 0.318

CGAT 1 <0.01 2 <0.01 0 0.00 0 0.00 4 <0.01 0.783 n.a

Total 564 834 738 1.153 1.070 0.239 0.129

* P values for the comparison of case and control haplotype frequencies were based upon simulations as previously described [33].

Taudien et al. BMC Research Notes 2012, 5:629 Page 4 of 8
http://www.biomedcentral.com/1756-0500/5/629
well as under-representation of high diploid DEF cluster
CN in patients with this disease [33]. In the present
study, no statistical support was found for an association
between DEFB104 haplotypes and either PDAC or CP.
However, analysis of the diploid CN distributions
revealed a statistically significant difference between
PDAC and CARLA1 that was due mainly to a paucity of
5- and 6-copy samples and an excess of 3-copy ones in
the PDAC cohort.
Recently, under-representation of higher diploid DEFB4

CNs (>4) was reported in patients with acute pancreatitis
(AP) and severe acute pancreatitis (SAP) [41]. Since
DEFB4 is part of DEF cluster b and concordance for the
CN of all genes within cluster b has been shown [16], this
result is in agreement with our findings in the PDAC co-
hort. However, for CP, known to increase the risk for
developing pancreatic cancer by 10 to 20-fold and a pos-
sible outcome of AP, we and others [42] did not observe
significant associations with genetic features of the DEF
cluster b, potentially pinpointing different roles of defen-
sins in the etiopathogenesis of pancreatic diseases.
Although the functional consequences of the lower DEF

cluster b CN observed for PDAC and AP are not yet
resolved, lower CNs are rather associated with lower
defensin expression [17]. In the light of inflammation as
key feature of AP and the established link between inflam-
mation and cancer [43], a low CN would be consistent
with an anti-inflammatory effect of defensins described re-
cently [44]. Assuming instead defensins to exert a pro-
inflammatory effect [45] would favor a role of perturbed
antimicrobial barrier defense in the etiopathogenesis of
PDAC and AP. Further studies are necessary to find these
missing functional links and to clarify which genetic var-
iants may serve as reliable and feasible markers in the
diagnosis and prognosis of pancreatic diseases.

Conclusion
Different DEF cluster b CN distribution between PDAC
patients and healthy controls indicate a potential pro-
tective effect of higher CNs against the disease. Replica-
tion of the study with larger sample numbers are needed
to confirm the result and to draw definitive conclusions
thereof.

Methods
Patients, DNA samples and Oligonucleotides
All individuals were of European origin. Cases of PDAC
and CP were taken from two cohorts of patients with
PDAC and CP who previously had undergone pylorus-
preserving pancreatico-duodenectomy. They were com-
plemented by age- and sex-matched healthy control
groups sampled from the CARLA Study, a prospective
cohort study of the general elderly population [34]. The
sampled controls from CARLA were free from heart



Figure 2 Distribution of DEF cluster b CN per diploid genome in the PDAC and CARLA1 (top) and CP and CARLA2 (bottom) cohorts.
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disease, cancer or any other severe chronic disease, and
without intake of antiphlogistic medication (Anatomical
Therapeutic Chemical Classification System (ATC) code
A07). A description of the age- and sex-distribution of
the groups is given in Table 1.
Genomic DNA was obtained from peripheral blood

collected in EDTA tubes (QIAamp DNA Mini Kit). The
studies were approved by the ethics committees of the
Universities of Dresden (Vote No. EK96042007) and
Halle (Vote No. 1983-01/07). Written informed consent
was obtained from all participants. The funding sources
of the study played no role in the study design, data col-
lection, data analysis, data interpretation or writing of
the report. A human genomic DNA pool derived from
~100 anonymous individuals (Roche Diagnostics, Cat.
No. 1691112) served as an additional control. All pri-
mers were synthesized by Metabion AG (Martinsried,
Germany).
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DEFB104 haplotyping
Amplification from individual genomic DNAs was car-
ried out using primers 5'-TTCTGTAGCCCCAA
CACCTC-3' and 5'-GGTGCCAAGGACATCTAGGA-3',
resulting in a 500 bp PCR product spanning four MSV
(rs17843871, rs2680507, rs17843872, rs4259430) around
exon 1 of DEFB104 (GenBank Refseq NM_080389.2).
PCR reactions were performed as described with the fol-
lowing cycling conditions: 95°C for 1 min; 5 cycles at
95°C for 30 s, 56°C for 30 s, and 72°C for 60 s, 27 cycles
at 95°C for 30 s, 58°C for 30 s, and 72°C for 60 s, with a
final extension at 72°C for 5 min [33]. The concentra-
tions of PCR products were measured by use of a
Nanodrop device and equal amounts were pooled per
cohort. Pooled DNAs were cloned into pCR2.1-TOPO
(Invitrogen) according to the manufacturer’s instruc-
tions and transformed into E.coli by electroporation.
Well-isolated colonies were transferred and grown in
LB broth supplemented with ampicillin. Plasmid DNA
was isolated from the cultures by BioRobot 8000 and
MagAttract 96 Miniprep Core Kit (Qiagen) and inserts
were sequenced in both directions using M13 universal
primers. Haplotypes were called by visual inspection of
the sequence traces.

DEF cluster copy numbers
For all individuals of the PDAC, CP, CARLA1 and
CARLA2 cohorts, CNs of DEF cluster b (including
DEFB104, Figure 1) were determined by multiplex
ligation-dependent probe amplification (MLPA), using
the P139 kit (MRC Holland), as previously described
[16]. The MLPA probe set consists of 43 probes of
which 10 are hybridizing to genes/pseudogenes within
DEF cluster a, 10 to genes within DEF cluster b and 23
to bona fide single-copy genes flanking the defensin
clusters as well as on other chromosomes, respectively.
Peak areas were normalized against the summed peak
areas of the “five nearest neighbor” (5nn) reference
probes for each individual sample, relative locus doses
were calculated and the diploid copy numbers were in-
ferred. As internal quality control, four DNAs
(NA18552, NA15324, NA12760, NA18858) with known
CN (2, 4, 6 and 8, respectively) from commercially avail-
able lymphoblastoid cell lines (Coriell Cell repository
http://www.coriell.org/) were used as copy number stan-
dards. Reliable copy number details from these samples
are from independent, methodologically different deter-
minations from different laboratories (see Table 2 in
Groth et al. 2008 and references therein).

Statistics
Following our PCR and sequencing approach, DEFB104
haplotype determination is hampered by the fact that
post-PCR pooling leads to an over-representation of
alleles derived from individuals with low DEF cluster CN
whilst alleles from genomes with high CN are under-
represented. Furthermore, the number of sequenced
clones differed considerably between the groups, ranging
from 564 to 1153. This implies that haplotypes as called
from sequence traces do not represent statistically inde-
pendent observations and do not reflect the truly under-
lying haplotype distribution. Therefore, a haplotype-wise
χ2 test could not be applied in the case–control compar-
isons. Instead, we simulated genotypes with respect to
individual CN under the null hypothesis (i.e. no differ-
ence between cases and controls) and derived reference
haplotype distributions for statistical testing from these
simulated data, as previously described [33].
Differences in DEF cluster b CNs between cases and

controls were first assessed by a comparison of the
group-specific mean diploid CNs. Since the mean may
not be a sufficient statistic for the underlying genotype
distribution, diploid CN was also treated as a qualitative
variable and gauged for statistically significant differ-
ences between groups using Fisher’s exact test as imple-
mented in the SAS statistical analysis package V9.2 (SAS
Inc., Cary, NY).

Additional files

Additional file 1: Integer DEF cluster b copy numbers per diploid
genome determined by MLPA, PDAC cohort.

Additional file 2: Integer DEF cluster b copy numbers per diploid
genome determined by MLPA, CP cohort.

Additional file 3: Integer DEF cluster b copy numbers per diploid
genome determined by MLPA, CARLA1 cohort.

Additional file 4: Integer DEF cluster b copy numbers per diploid
genome determined by MLPA, CARLA2 cohort.

Additional file 5: Summary of DEF cluster b CN distribution.

Additional file 6: Statistics for comparisons of DEF cluster b CN
distribution.
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