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Abstract

Background: Low-stringency single specific primer PCR (LSSP-PCR) is a highly sensitive and discriminating
technique that has been extensively used to genetically characterize Trypanosoma cruzi populations in the presence
of large amounts of host DNA. To ensure high sensitivity, in most T. cruzi studies, the variable regions of the
naturally amplified kinetoplast DNA (kDNA) minicircles were targeted, and this method translated the intraspecific
polymorphisms of these molecules into specific and reproducible kDNA signatures. Although the LSSP-PCR
technique is reproducible under strict assay conditions, the complex banding pattern generated can be significantly
altered by even a single-base change in the target DNA. Our survey of the literature identified eight different
primers with similar, if not identical, names that have been used for kDNA amplification and LSSP-PCR of T. cruzi.
Although different primer sequences were used in these studies, many of the authors cited the same reference
report to justify their primer choice. We wondered whether these changes in the primer sequence could affect also
the parasite LSSP-PCR profiles.

Findings: To answer this question we compared the kDNA signatures obtained from three different and
extensively studied T. cruzi populations with the eight primers found in the literature. Our results clearly
demonstrate that even minimal modifications in the oligonucleotide sequences, especially in the 3′ or 5′ end, can
significantly change the kDNA signature of a T. cruzi strain.

Conclusions: These results highlight the necessity of careful preservation of primer nomenclature and sequence
when reproducing an LSSP-PCR work to avoid confusion and allow comparison of results among different
laboratories.
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Introduction
Chagas disease is caused by the protozoan Trypanosoma
cruzi and has a variable clinical course ranging from
symptomless infection to severe chronic disease with
cardiovascular and/or gastrointestinal involvement. The
factors influencing this clinical variability have not yet
been elucidated, but both host and parasite genetic fac-
tors are likely important.
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The biological, biochemical, and genetic diversity of T.
cruzi strains have long been recognized, and over the
years, numerous approaches have been used to
characterize the parasites, such as multilocus enzyme
electrophoresis (MLEE) [1,2], kinetoplast DNA restric-
tion fragment length polymorphisms (kDNA RFLP) [3],
random amplified polymorphic DNA (RAPD) [4-6], low-
stringency single specific primer PCR (LSSP-PCR) [7],
multilocus microsatellite typing (MLMT) [8-11], and
many other methods such as PCR of the mini-exon and
rDNA genes [12, 13].
The extensive efforts to comprehend the intraspecific

genetic polymorphisms and population structure of T.
cruzi are justified by the correlation between genetic
variation and the biological properties of the parasite, in-
cluding geographical distribution, host specificity, and
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the clinical outcome of infection. Additional understand-
ing of the relationship between T. cruzi variation and
clinical outcome will likely lead to a better understand-
ing of the molecular epidemiology of Chagas disease
[14–16].
In this context, LSSP-PCR targeting the sequence poly-

morphisms within the variable regions of T. cruzi kDNA
[17–21] or the intergenic regions of the spliced-leader gene
[22] allows direct profiling of the parasites present in the tis-
sues of chronically infected patients [21, 23].
LSSP-PCR is an extremely simple, PCR-based tech-

nique that permits the detection of single or multiple
mutations in gene-sized DNA fragments. Briefly, purified
DNA fragments are subjected to PCR using high con-
centrations of a single specific oligonucleotide primer,
large amounts of Taq DNA polymerase, and a very low
annealing temperature. Under these conditions, the pri-
mer hybridizes specifically to its complementary region
and nonspecifically to multiple sites within the DNA
fragments in a sequence-dependent manner, producing a
heterogeneous set of reaction products that constitutes a
unique “gene signature profile” [24]. In fact, LSSP-PCR
has been used in many organisms and fields of genetics
and molecular medicine to obtain rapid, cheap and sen-
sitive detection of mutations and sequence variations
[25–33].
The first study to use LSSP-PCR on T. cruzi was

performed by Vago and collaborators using a primer
called S35 as a driver [21, 23]. This primer was originally
designed to amplify minicircle variable region sequences
of T. cruzi [34]. Many subsequent works cite these studies
to justify the use of the chosen methodology, although the
primer sequences published do not exactly match what
was previously used. Although the LSSP-PCR technique is
highly reproducible under strict conditions, the complex
banding pattern obtained can be significantly altered by
even a single-base change in the target DNA [24], which
suggests that different primer sequences may also produce
substantially different results.
Here, we surveyed the literature to catalogue the pri-

mer sequences used for T. cruzi kDNA analysis by
LSSP-PCR and references cited by many research groups
to assess the impact of the primer sequence on the para-
site profiles. Our results clearly demonstrated that LSSP-
PCR is a sensible and reproducible profiling technique,
but minimal modifications in the oligonucleotide se-
quences, used in the second round of PCR, can signifi-
cantly change the kDNA signature of T. cruzi strains.

Findings
Parasites and DNA extraction
Three T. cruzi populations were used: the CL Brener
clone (T. cruzi VI), which was harvested from the CL
strain isolated from a Triatoma infestans specimen; the
Col1.7G2 clone (T. cruzi I), which was obtained from
the Colombian strain and originally isolated from the
blood of a chronic cardiac patient in Colombia; and the
JG strain (T. cruzi II), a monoclonal population isolated
from a chagasic patient with megaesophagus in Minas
Gerais, Brazil.
For T. cruzi DNA extraction, the epimastigote forms

of each parasite population were grown in liver infusion
tryptose (LIT) medium containing 10% calf serum at
27–28°C. Once the culture contained 108 epimastigote
forms, the parasite cells were harvested, washed three
times in sterile phosphate buffered saline and lysed in
the presence of proteinase K overnight at 56°C. Standard
DNA extraction was performed with phenol/chloroform
as previously described [35].

Low-stringency single specific primer polymerase chain
reaction (LSSP-PCR)
The kDNA signatures were obtained using a two-step
procedure. The first step consisted of the specific PCR
amplification of fragments of approximately 330 bp from
variable regions of T. cruzi kDNA minicircle molecules.
This reaction was carried out in a final volume of 20 μl
and contained 1.5 mM MgCl2, Green Go Taq Reaction
Buffer pH 8.5 (Promega, Madison, Wisconsin, USA),
250 μM dNTPs, primers 121 or S35 (5′-AAATAATG
TACGGGKGAGATGCATGA-3′) and 122 (5′-GGTTC
GATTGGGGTTGGTGTAATATA-3′) at 1.0 μM, 1.0 U
of Go Taq DNA Polymerase (Promega) and 1.0 ng of
purified DNA template. Amplification was performed in
a PT100 thermocycler (MJ Research) using an initial
denaturation step at 94°C for 5 min followed by 35 amp-
lification cycles of an annealing step at 60°C, extension
at 72°C and denaturation at 94°C, each for 1 min. The
final extension step was extended to 10 min. Five micro-
liters of PCR products was visualized on a silver-stained
6% polyacrylamide gel as previously described [36].
The remaining 15 μL of the PCR reaction was then

subjected to electrophoresis on an ethidium bromide-
stained 1.5% agarose gel (1.0% agarose, 0.5% low melting
point agarose). The kDNA amplicons were excised from
the gel, diluted 10-fold in sterile Milli-Q water and sub-
mitted to a second step of low-stringency amplification
using a single primer (LSSP-PCR) (Table 1). This second
PCR was carried out in a final volume of 10 μl and
contained 1.5 mM MgCl2, Colorless Go Taq Reaction
Buffer pH 8.5 (Promega), dNTPs at 250 μM, primer at
4.5 mM, 1.6 U of Go Taq DNA Polymerase (Promega)
and 1.0 μl of a solution containing the approximately
330 bp DNA fragments prepared as described above.
Amplification was performed in a PT100 thermocycler
(MJ Research) as follows: an initial denaturation step at
94°C for 5 min, followed by 40 amplification cycles of:
an annealing step at 30°C, extension step at 72°C, and



Table 1 Sequence of primers designed to analyze three T. cruzi populations by LSSP-PCR

Primer
code

Original
name Sequence (5′→ 3′) Size

(bp)
Reference

1 26

C S35 AAATAATGTACGGGKGAGATGCATGA 26 [20, 22, 34, 40]

A S35 —ATAATGTACGGGKGAGATGC—— 20 [42]

B S35 AAATAATGTACGGG-GAGATGCATGA 25 [23, 43–45]

D S35 AAATAATGTACGGGGGAGATGCATGA 26 [7, 21]

E S35G ———ATGTACGGG-GAGATGCATGA 20 [17, 35, 46]

F S35G* ———ATGTACGGGGGAGATGCATGA 21 [19]

G S35G AAATAATGTACGGGGGAGATG——— 21 [41, 47]

H S35G 5 AAATAATGTACGGGGGAGAT———— 20 Not published

*Indicates that this primer was originally described as fluorescein labeled but here the fluorescent marker was removed. All changes relative to primer S35
described by Sturm et al. (primer C) are highlighted.

Segatto et al. BMC Research Notes 2013, 6:174 Page 3 of 6
http://www.biomedcentral.com/1756-0500/6/174
denaturation step at 94°C, each for1 min. The final
extension step was extended to 10 min. LSSP-PCR prod-
ucts were also visualized on a silver-stained 6% poly-
acrylamide gel.

Data analysis
LSSP-PCR reactions were performed in triplicate, and
only the consistent bands were taken into account to
build a reproducible profile of each T. cruzi population.
The multiband profiles obtained by LSSP-PCR of the T.
cruzi populations were scored by eye, and each amplifi-
cation band was numbered as present (1) or absent (0).
These data were recorded on DNA-POP software [37],
which calculates the proportion of shared bands among
samples. Additionally, the distances among the profiles
obtained with the different primers were calculated
using the Nei and Li coefficient [38]. Phylogenetic trees
were constructed based on genetic distance matrices
obtained through UPGMA or primer sequences using
the Treecon software program version 1.3b [39].

Results
The 330 bp band corresponding to the variable region of
kDNA minicircle molecules was successfully amplified
Figure 1 Amplification of the hypervariable regions of kDNA
minicircle molecules of three T. cruzi populations. The PCR
assays were performed in triplicate by three independent reactions
for each T. cruzi population (CL Brener clone, Col1.7G2 clone or JG
strain), as indicated in the figure. NC: negative control (without
parasite DNA). MM: molecular size marker (1 Kb Plus DNA ladder -
Invitrogen®).
in all analyzed stocks (Figure 1). These amplicons were
used as the templates for the second PCR reaction with
different single primers to observe the influence of pri-
mer sequence on the kDNA signatures.
The LSSP-PCR profiles were reproducible in the evalu-

ated banding range of 100–400 bp (Figure 2) and
showed high inter-strain genetic variability among the
three T. cruzi analyzed stocks, with clear, distinct pat-
terns for each strain that were independent of the
primer used (Figure 3). However, the multiband profiles
of each strain obtained with the eight different primers
resulted mostly in different kDNA signatures, although
there was minimal sequence variation observed for some
primers (Figure 3).
We further investigated whether the LSSP-PCR pro-

files produced were more similar when the primer
Figure 2 Reproducibility of kDNA signatures obtained with
different primers from LSSP-PCR. The amplifications were
performed in triplicate by three independent reactions for each T.
cruzi population (CL Brener clone, Col1.7G2 clone or JG strain), each
strain with a different primer, as indicated in the figure. MM:
molecular size marker (1 Kb Plus DNA ladder - Invitrogen®).



Figure 3 Evaluation of the genetic variability among three T. cruzi populations by LSSP-PCR with different primers. The primer used
(A to H) is indicated below the profiles. MM: molecular size marker (1 Kb Plus DNA ladder - Invitrogen®).
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sequences were more similar. A phenotypic tree was
constructed using the presence or absence of bands in
the LSSP-PCR profiles as the distance matrix and the
topology was compared with another tree constructed
using the primer sequence data (Figure 4 and Table 1).
As shown in Figure 4, there was not a general match
between the trees’ topologies. For some of the primers
(e.g., primers B, C and D) there was a correlation be-
tween the similarity of the LSSP-PCR profiles generated
and the primer sequence similarities. However, this was
not observed for other more heterogeneous primers,
suggesting that the position of nucleotide substitutions
or insertions/deletions may have a strong influence on
the profiles. In this aspect, as expected, small differences
in the 3′ region, such as the single deletion between
primers G and H, caused dramatic changes in the LSSP-
PCR profiles. However, unlike for conventional PCR, alter-
ations in the 5′ region of the primers (e.g., primers D and
F) also strongly affected the LSSP-PCR profiles (Table 1
and Figure 4). This was not observed for the primers B
and D, where the deletion is located in a more central pos-
ition of the primer sequences (15th nucleotide).
Finally, we used the median proportion of shared

bands between the LSSP-PCR profiles derived from the
different T. cruzi stocks to evaluate the ability of primers
to distinguish different parasites. According to this ana-
lysis, the most discriminative primer was F generating
an average of 24% shared bands among the three strains,
whereas the less polymorphic was primer G with 48% of
shared bands (Table 2).
Figure 4 LSSP-PCR trees. (A) UPGMA tree generated from the distance o
present and absent bands for the T. cruzi populations CL Brener, Col1.7G2 a
Discussion
The application of LSSP-PCR to the characterization of
the 330 bp variable portion of kDNA minicircle mole-
cules produces complex banding patterns that allow
identification of clones and strains from cultures or ex-
perimentally infected tissues with good discriminatory
capacity [21]. Furthermore, the large genetic diversity in
kDNA signatures obtained confirms the applicability of
this method to genetic characterization studies on nat-
urally infected vectors and humans [40, 41]. Differential
tissue distribution of diverse clones of T. cruzi have
been demonstrated in infected mice [35] and humans
[7, 23]. LSSP-PCR is also useful to identify the differen-
tial distribution of T. cruzi populations associated with
disease reactivation [18].
Despite being widely used for T. cruzi studies,

LSSP-PCR reproducibility has been questioned due to
its low-stringency nature. However, we have observed
in our laboratory over our ten years of experience
that LSSP-PCR patterns are highly reproducible even
when the experiments are performed on separate days
by different workers or when different thermocyclers
and electrophoretic runs are used. To achieve this
standardized amplification conditions both the en-
zyme and primer sources, and a good quality DNA at
an adequate concentration must be consistently used
[21]. Herein, we confirmed the high reproducibility of
the technique by performing reactions at least three
times on different days and obtaining highly stable
profiles using different primers.
f the LSSP-PCR profiles produced by each primer based on the sum of
nd JG. (B) Distance tree constructed from the primer sequences.



Table 2 Average ratio of the proportion of shared bands
among samples using the different primers

Primer Mean proportion of shared bands

primer A 0.3909

primer B 0.4050

primer C 0.3882

primer D 0.3401

primer E 0.3945

primer F 0.2364

primer G 0.4873

primer H 0.3176

mean 0.3700
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LSSP-PCR uses a single primer that hybridizes with
high specificity to its complementary sequence incorpo-
rated into the amplicons during the first round of PCR,
and also with low specificity but in a sequence-
dependent manner to multiple sites within the amplified
fragment during the second round. Thus the reaction
yields a large number of products that can be resolved
by electrophoresis to give rise to a multiband DNA frag-
ment signature that reflects the DNA template sequence
[24]. Changes as small as a single base mutation could
drastically alter the multiband pattern, producing new
signatures that are diagnostic of the specific alterations
[21, 24]. In this context, we asked whether the primer
sequence might also influence the kDNA complex band
in pattern.
To that end, we evaluated eight primer sequences

previously used in the literature with similar names
or citations. Our results demonstrated that sets of
primers with related sequences, but differing from
one another by 1 to 7 bases, resulted in different
kDNA signatures for the same strain. In fact, alter-
ations in primer sequence as small as a unique base
mutation affected the kDNA multiband patterns, es-
pecially changes in the 3′or 5′ regions.
On the other hand, when we analyzed the profiles

obtained with the same primer for the three evaluated
strains, we saw that they were completely different
from one another despite of the primer used. This is
extremely important since the main goal of LSSP-
PCR is to detect genetic polymorphisms in T. cruzi
isolates belonging to distinct populations such as in
different distant endemic areas or outbreaks or differ-
ent clones within the same population with different
tropisms, for example.
In conclusion we demonstrate here the importance of

primer sequence when performing LSSP-PCR, at least
for T. cruzi kDNA. This is especially relevant because
different researchers frequently reproduce published
techniques, but if the primer sequences are not faithful,
comparisons of LSSP-PCR results among laboratories
are not feasible, contributing to the false idea that LSSP-
PCR is a technique poorly reproducible. Additionally,
cases where oligonucleotide sequences are intentionally
changed should be followed also by changes in the
primers’ names. This would be highly useful for all la-
boratories working on kDNA signatures, while avoiding
confusion and improving the comparison of LSSP-PCR
patterns among laboratories.
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