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Abstract

Background: The current revolution in genomics has been made possible by software tools called genome
assemblers, which stitch together DNA fragments “read” by sequencing machines into complete or nearly complete
genome sequences. Despite decades of research in this field and the development of dozens of genome assemblers,
assessing and comparing the quality of assembled genome sequences still relies on the availability of independently
determined standards, such as manually curated genome sequences, or independently produced mapping data.
These “gold standards” can be expensive to produce and may only cover a small fraction of the genome, which limits
their applicability to newly generated genome sequences. Here we introduce a de novo probabilistic measure of
assembly quality which allows for an objective comparison of multiple assemblies generated from the same set of
reads. We define the quality of a sequence produced by an assembler as the conditional probability of observing the
sequenced reads from the assembled sequence. A key property of our metric is that the true genome sequence
maximizes the score, unlike other commonly used metrics.

Results: We demonstrate that our de novo score can be computed quickly and accurately in a practical setting even
for large datasets, by estimating the score from a relatively small sample of the reads. To demonstrate the benefits of
our score, we measure the quality of the assemblies generated in the GAGE and Assemblathon 1 assembly “bake-offs”
with our metric. Even without knowledge of the true reference sequence, our de novometric closely matches the
reference-based evaluation metrics used in the studies and outperforms other de novometrics traditionally used to
measure assembly quality (such as N50). Finally, we highlight the application of our score to optimize assembly
parameters used in genome assemblers, which enables better assemblies to be produced, even without prior
knowledge of the genome being assembled.

Conclusion: Likelihood-based measures, such as ours proposed here, will become the new standard for de novo
assembly evaluation.

Background
The genome sequence of an organism is a critical resource
for biologists trying to understand the organism’s func-
tion and evolution. Obtaining this sequence is difficult
as modern sequencing technologies can only “read” small
pieces of the genome (called reads). The fact that these
tiny reads (under a few thousands of basepairs in length)
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can be glued together to reconstruct genomes compris-
ing millions to billions of basepairs is by no means evident
and was the subject of vigorous scientific debate dur-
ing the early days of sequencing technologies [1,2]. The
modern genomic revolution was in no small part made
possible by the development of algorithms and computa-
tional tools called genome assemblers able to reconstruct
near-complete representations of a genome’s sequence
from the fragmented data generated by sequencing instru-
ments. Despite tremendous advances made over the past
30 years in both sequencing technologies and assembly
algorithms, genome assembly remains a highly difficult
computational problem. In all but the simplest cases,
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genome assemblers cannot fully and correctly recon-
struct an organism’s genome. Instead, the output of an
assembler consists of a set of contiguous sequence frag-
ments (contigs), which can be further ordered and ori-
ented into scaffolds, representing the relative placement
of the contigs, with possible intervening gaps, along the
genome.
Theoretical analyses of the assembly problem, com-

monly formulated as an optimization problem within
an appropriately defined graph, have shown that assem-
bly is NP-hard [3,4], i.e., finding the correct optimal
solution may require an exhaustive search of an expo-
nential number of possible solutions. The difficulty of
genome assembly is due to the presence of repeated
DNA segments (repeats) in most genomes. Repeats longer
than the length of the sequenced reads lead to ambi-
guity in the reconstruction of the genome – many
different genomes can be built from the same set of
reads [5,6].
As a result, practical implementations of assembly algo-

rithms (such as ABySS [7], Velvet [8], SOAPdenovo [9],
etc.) return just an approximate solution that either con-
tains errors, or is fragmented, or both. Ideally, in a
genomic experiment, assembly would be followed by the
scrupulous manual curation of the assembled sequence
to correct the hundreds to thousands of errors [10],
and fill in the gaps between the assembled contigs [11].
Despite the value of fully completed and verified genome
sequences [12], the substantial effort and associated cost
necessary to conduct a finishing experiment to its con-
clusion can only be justified for a few high-priority
genomes (such as reference strains or model organisms).
The majority of the genomes sequenced today are auto-
matically reconstructed in a “draft” state. Despite the
fact that valuable biological conclusions can be derived
from draft sequences [13], these genomes are of uncer-
tain quality [14], possibly impacting the conclusions of
analyses and experiments that rely on their primary
sequence.
Assessing the quality of the sequence output by an

assembler is, thus, of critical importance, not just to
inform downstream analyses, but also to allow researchers
to choose from among a rapidly increasing collection
of genome assemblers. Despite apparent incremental
improvements in the performance of genome assem-
blers, none of the software tools available today outper-
forms the rest in all assembly tasks. As highlighted by
recent assembly bake-offs [15,16], different assemblers
“win the race” depending on the specific characteris-
tics of the sequencing data, the structure of the genome
being assembled, or the specific needs of the downstream
analysis process. Furthermore, these recent competitions
have highlighted the inherent difficulty of assessing the
quality of an assembly. More specifically, all assemblers

attempt to find a trade-off between contiguity (the size
of the contigs generated) and accuracy of the resulting
sequence. Evaluating this trade-off is difficult even when
a gold standard is available, e.g., when re-assembling a
genome with known sequence. In most practical settings,
a reference genome sequence is not available, and the
validation process must rely on other sources of informa-
tion, such as independently derived data from mapping
experiments [17], or from transcriptome sequencing [18].
Such data are, however, often not generated due to
their high cost relative to the rapidly decreasing costs
of sequencing. Most commonly, validation relies on de
novo approaches based on the sequencing data alone,
which include global “sanity checks” (such as gene den-
sity, expected to be high in bacterial genomes, mea-
sured, for example, through the fraction of the assembled
sequence that can be recognized by PFAM profiles [19])
and internal consistency measures [20] that evaluate the
placement of reads and mate-pairs along the assembled
sequence.
The validation approaches outlined above can highlight

a number of inconsistencies or errors in the assembled
sequence, information valuable as a guide for further
validation and refinement experiments, but difficult to
use in a comparative setting where the goal is to com-
pare the quality of multiple assemblies of a same dataset.
For example, even if a reference genome sequence is
available, while all differences between the reassembled
genome and the reference are, at some level, assembly
mistakes, it is unclear whether one should weigh single
nucleotide differences and short indels as much as larger
structural errors (e.g., translocation or large scale copy-
number changes) [15] when comparing different assem-
blies. Furthermore, while recent advances in visualization
techniques, such as the FRCurve of Narzisi et al. [21,22],
have made it easier for scientists to appropriately visualize
the overall tradeoff between assembly contiguity and cor-
rectness, there exist no established approaches that allow
one to appropriately weigh the relative importance of the
multitude of assembly quality measures, many of which
provide redundant information [22].
Here we propose an objective and holistic approach

for evaluating and comparing the quality of assemblies
derived from a same dataset. Our approach defines the
quality of an assembly as the likelihood that the observed
reads are generated from the given assembly, a value
which can be accurately estimated by appropriately mod-
eling the sequencing process. This basic idea was formu-
lated in the 1990’s in the pioneering work of Gene Myers
[3], where he suggested the correct assembly of a set of
reads must be consistent (in terms of the Kolmogorov-
Smirnoff test statistic) with the statistical characteris-
tics of the data generation process. The same basic idea
was further used in the arrival-rate statistic (A-statistic)
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in Celera assembler [23] to identify collapsed repeats,
and as an objective function in quasi-species (ShoRAH
[24], ViSpA [25]), metagenomic (Genovo [19]), general-
purpose assemblers [26], and recent assembly evaluation
frameworks (ALE [27], CGAL [28]).
In our paper, we will describe in detail a mathematical

model of the sequencing process that takes into account
sequencing errors and mate-pair information, and show
how this model can be computed in practice. We will also
show that this de novo probabilistic framework is able
to automatically and accurately reproduce the reference-
based ranking of assembly tools produced by the Assem-
blathon [15] and GAGE [16] competitions. Our work is
similar in spirit to the recently published ALE [27] and
CGAL [28]; however, we provide here several extensions
of practical importance. First, we propose and evaluate
a sampling-based protocol for computing the assembly
score which allows the rapid approximation of assem-
bly quality, enabling the application of our methods to
large datasets. Second, we evaluate the effect of unassem-
bled reads and contaminant DNA on the relative ranking
of assemblies according to the likelihood score. Finally,
we will demonstrate the use of our probabilistic quality
measure as an objective function in optimizing the param-
eters of assembly programs. The software implementing
our approach is made available, open-source and free of
charge, at: http://assembly-eval.sourceforge.net/.

Methods
Theoretical foundation for probabilistic evaluation
In this section, we formalize the probabilistic formula-
tion of assembly quality and the model of the sequencing
process that allows us to compute the likelihood of any
particular assembly of a set of reads. We will show that the
proposed probabilistic score is correct in the sense that
the score is maximized by the true genome sequence.

Likelihood of an assembly
Let A denote the event that a given assembly is the true
genome sequence, and let R denote the event of observing
a given set of reads. In the following, we will use the same
symbol to denote the assembly sequence and the event of
observing the assembly. We will also use the same symbol
to denote the set of reads and the event of observing the
set of reads.
According to Bayes’ rule, given the observed set of reads,

the probability of the assembly can be written as:

Pr[A|R]= Pr[R|A] Pr[A]
Pr[R]

(1)

where Pr[A] is the prior probability of observing the
genome sequence A. Any prior knowledge about the
genome being assembled (e.g., approximate length, pres-
ence of certain genes, etc.) can be included in Pr[A];

however, for the purpose of this paper, we will assume that
this prior probability is constant across the set of “reason-
able” assemblies of a same set of reads. Given commonly
available information about the genomes, formulating a
precise mathematical framework for defining Pr[A] is an
extensive endeavor beyond the scope of this paper.
Similarly, Pr[R] is the prior probability of observing the

set of reads R. Since our primary goal is to compare multi-
ple assemblies of a same set of reads, rather than to obtain
a universally accurate measure of assembly quality, we can
assume Pr[R] is a constant as well. Thus, for the purpose
of comparing assemblies, the values Pr[A|R] and Pr[R|A]
are equivalent. The latter, the posterior probability of a set
of reads, given a particular assembly of the data, can be
easily computed on the basis of an appropriately defined
model of the sequencing process and will be used in our
paper as a proxy for assembly quality.
Under the assumption that individual reads are inde-

pendent of each other (violations of this assumptions in
the case of mate-pair experiments will be discussed later
in this section), Pr[R|A]= ∏

r∈R Pr[r|A]. If the set of reads
is unordered, we need to account for the different permu-
tations that generate the same set of reads. As this value
is a constant for any given set of reads, we ignore it in the
rest of our paper.
Pr[r|A], hereafter referred to as pr , can be computed

using an appropriate model for the sequencing process.
Throughout the remainder of the paper, we will discuss
increasingly complex models and their impact on the
accuracy of the likelihood score.

True genome obtains themaximum likelihood
Any useful assembly quality metric must achieve its max-
imum value when evaluating the true genome sequence;
otherwise, incorrect assemblies of the data would be
preferred. We prove below that the likelihood measure
proposed in our paper satisfies this property.
Assuming that we have a set of reads R from the true

genome, produced by generating exactly one single-end
read from each location in the genome without errors and
with a fixed length. Given the set of reads R, the probabil-
ity a particular read is generated from the true genome is
precisely the number of times the read occurs in R divided
by the size of R (note that multiple reads can have the
same sequence, e.g., when generated from repeats). LetNs
denote number of times that the sequence s occurs in R,
and qs = Ns/|R| denote the probability that sequence s
is generated from the true genome. To show that the true
genomemaximizes the likelihood score, let us assume that
we have some assembly A and ps is the probability that the
sequence s is generated from the assembly A.
Given assembly A, our likelihood score is then the prod-

uct of psNs over all sequences s in S, which can be rewritten
as

∏
s∈S psqs|R| = (

∏
s∈S psqs)|R|. Now, note that since |R|

http://assembly-eval.sourceforge.net/
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is a fixed constant, maximizing the likelihood score is
equivalent to maximizing

∏
s∈S

psqs

The likelihood can be re-written as

log(
∏
s∈S

psqs) =
∑
s∈S

qs log ps

=
∑
s∈S

qs log(
ps
qs

) +
∑
s∈S

qs log qs

= −DKL(Q||P) − H(Q),

where DKL(Q||P) is the KL-divergence for the distribu-
tions Q and P, and H(Q) is the Shannon entropy of Q.
Since the KL-divergence is always non-negative and only
equal to 0 if and only if Q = P, the average probability is
maximized if the assembly is equal to the true genome.
Even though the true genome does maximize the like-

lihood in this model, there may be other assemblies that
achieve the same optimal score as long as these assemblies
yield probabilities ps which are equal to the probabilities
qs for every sequence s. This can happen, for example,
in the case of a misassembly that is nonetheless consis-
tent with the generated reads. This situation highlights
the loss of information inherent in modern sequencing
experiments – without additional long-range informa-
tion, the information provided by the reads themselves
is insufficient to distinguish between multiple possible
reconstructions of a genome [6].

Error-freemodel for fragment sequencing
The most basic model for the sequencing process is the
error-free model. In this model, we assume reads of a given
fixed length (a more general read length distribution can
be included in the model but would not impact compar-
ative analyses of assemblies derived from a same set of
reads). We further assume that reads are uniformly sam-
pled across the genome, i.e., that every position of the
genome is equally likely to be a starting point for a read.
This simplifying assumption is made by virtually all other
theoretical models of genome assembly, despite the biases
inherent to all modern sequencing technologies. A more
accurate, technology-dependent, model can be obtained
by including additional factors that account, for example,
for DNA composition biases. For the purpose of gener-
ality, we restrict our discussion to the uniform sampling
model. Furthermore, for the sake of simplicity, we assume
(1) that the true genome consists of a single circular con-
tiguous sequence, (2) that our assembly is also a single
contig, and (3) that every read can be mapped to the
assembly. We will later discuss extensions of our model
that relax these assumptions.

Under these assumptions, we can compute the probabil-
ity of a read r given the assembled sequence as:

pr = nr
2L

(2)

where nr represents the number of places where the read
occurs in the assembled sequence of length L. The fac-
tor 2 is due to the fact that reads are sampled with equal
likelihood from both the forward and reverse strands of a
DNA molecule. This formulation was previously used by
Medvedev et al. [26] to define an objective function for
genome assembly.

A realistic model of the sequencing process
The error-free model outlined above makes many sim-
plifying assumptions that are not representative of real
datasets. Here we demonstrate how the model can be
extended to account for artifacts such as sequencing
errors, mate-pair information, assemblies consisting of
multiple contigs, and the presence of un-mappable reads.

Sequencing errors
All current technologies for sequencing DNA have a small
but significant probability of error. Here we focus on
three common types of errors: the insertion, deletion, and
substitution of a nucleotide.
In the error-free model, the probability of a read hav-

ing been generated from a position j in the sequence is
one if the read exactly matches the reference at that posi-
tion and zero otherwise. We now extend this model such
that the probability of each read having been generated
from any position j of the reference is a real value between
zero and one, representing the likelihood that a sequenc-
ing instrument would have generated that specific read
from that specific position of the reference. This value
clearly depends on the number of differences between the
sequence of the read and the sequence of the reference at
position j. Given the assembled sequence, the probability
of a particular read will be the cumulative probability of
the read across all possible locations in the genome.
Specifically, let us denote the probability that read r is

observed by sequencing the reference, ending at position j
by pr,j. Then, the total probability of the read r is

pr =
∑L

j=1 pforwardr,j + ∑L
j=1 preverser,j

2L
(3)

The individual probabilities pr,j can be computed if we
do not model insertion and deletion errors and only allow
substitution errors which occur with probability ε. The
per-base probability of a substitution error can be set indi-
vidually for each based on the quality value produced by
the sequencing instrument. Then, pr,j = εs(1 − ε)l−s,
where s is the number of substitutions needed to match
read r to position j of the reference sequence. In the more



Ghodsi et al. BMC Research Notes 2013, 6:334 Page 5 of 18
http://www.biomedcentral.com/1756-0500/6/334

general case, pr,j values can be computed using dynamic
programming.

Exact probability calculation via dynamic programming
For a model of the sequencing process that allows inser-
tions, deletions, and substitutions with specific probabili-
ties, we can exactly compute probability, pr = Pr[r|A], of
observing a read r given an assembly A using a dynamic
programming algorithm. In general, we want to find the
sum of the probabilities of all possible alignments of a read
to a position of the assembly.
The number of such possible alignments grows expo-

nentially as a function of read length. Most of those
alignments have a very small probability. However, several
alignments may have probabilities that are equal or close
to the optimal. For example, when aligning the sequence
ACG to the assembly ACCG, both A-CG and AC-G are
optimal alignments and have the same probability. The
contribution of all such alignments must be taken into
account when computing the probability for a read.
We use a dynamic programming algorithm (similar to

the “forward” algorithm in Hidden Markov Models) to
efficiently calculate the sum of the probabilities of all
alignments of a read to the assembly as follows. In the
formula (3), pforwardr,j and preverser,j are the sum of the proba-
bilities of all possible alignments of the read r to, respec-
tively, the reference and its reverse complement, ending at
position j.
We define T[x, y] as the probability of observing prefix

[1 . . . y] of the read r, if y bases are sequenced from the
reference, ending at position x. Therefore, pr,j = T[j, l].
T[x, 0] represents the probability of observing an empty
sequence if we sequence zero bases and is set to 1. T[0, y]
represents the probability of observing prefix [1 . . . y] of
the read if y bases are sequenced from the reference,
ending at position 0 (before the beginning), and is set
to 0.
For x ≥ 1 and y ≥ 1, T[x, y] is recursively defined:

T[x, y] = T[x − 1, y − 1] Pr[Substitute(A[x] , r[ y])] (4)
+ T[x, y − 1] Pr[Insert(r[ y])]
+ T[x − 1, y] Pr[Delete(A[x])] ,

where r[ y] and A[x] represent the nucleotides at positions
y and x of the read r and the assembly A, respectively.
Pr[Substitute(A[x] , r[ y])] is the probability of observing
the nucleotide r[ y] by sequencing the nucleotide A[x]. In
our experiments, we did not distinguish between differ-
ent types of errors and considered their probability to be ε

and the probability of observing the correct nucleotide to
be 1 − ε.
The dynamic programming algorithm outlined above

has a running time of O(lL) per read. Even though the

running time is polynomial, it is slow in practice. How-
ever, we can speed it up by using alignment seeds. The
seeds would give us the regions of the assembly where a
read may align with high probability. We can apply the
dynamic programming only to those regions and get a
very good approximate value of the total probability. We
use exact seeds (k-mers) of a given length to build a hash
index of the assembly sequence. Then, each read is com-
pared to the regions where it has a common k-mer with
the assembly sequence.

Mate pairs
Many of the current sequencing technologies produce
paired reads – reads generated from the opposite ends of
the same DNA fragment. This information is extremely
valuable in resolving genomic repeats and in ordering the
contigs along long-range scaffolds; however, the paired
reads violate the assumption that reads are sampled inde-
pendently, that we made in the discussion above. To
address this issue, we can use the pairs rather than the
individual reads as the underlying objects from which the
assembly likelihood is computed. To address the possi-
bility that assembly errors may result in violations of the
constraints imposed by the paired reads, we only con-
sider pairs for which both ends align to a same contig or
scaffold within the constraints imposed by the parame-
ters of the sequencing experiment. Any pairs that violate
these constraints get classified as unassembled. Note that
in addition to sequencing errors, we now also handle
fragment sizing errors – deviations of the estimated dis-
tance between paired reads from the distance implied by
the sequencing experiment. We model the distribution
of fragment sizes within a same library by a normal dis-
tribution, using user-supplied parameters, and use this
information to appropriately scale the likelihood estimate
for each possible placement of a mate pair along the
genome.
We modify the dynamic programming recurrence from

formula (4) to handle the probability calculation for the
paired reads as follows. The probability of the first read in
the pair is calculated as the same as in the formula (4). For
the second read, we adjust the dynamic programming to
ensure that it is aligned within a certain distance down-
stream of the alignment of the first read. We modify the
first column of the dynamic programming table of the sec-
ond read in the pair to take into account the distance from
the first read.
Formally, given a paired read, we define T2[x, y] as the

probability of observing prefix [1 . . . y] of the 2nd read
in the pair, if y bases are sequenced from the reference,
ending at position x.
Assume that the second read occurs after the first read

and is separated by a normally-distributed distance with
mean μ and with a standard deviation σ .
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Therefore,

T2[x, 0]=
x∑

i=1
Pr[insert(x − i)|N(μ, σ)))]+T1[x − i, l],

(5)

where Pr[insert(n)|N(μ, σ)))] is the probability of observ-
ing an insert size of length n from a normal distribution
with parameters μ and σ , and l is the length of the first
read in the pair.
Instead of using two tables, we can concatenate the

read pair together with a special character (M), which will
signal when the insert size should be taken into account.
For x ≥ 1 and y ≥ 1, T[x, y] is recursively defined as

follows:

T[x, y]= if r[ y]=
= M

{ ∑x
i=1 Pr[insert(x − i)|N(μ, σ)))]+T[x − i, y − 1]

else

⎧⎨
⎩

T[x − 1, y − 1] Pr[Substitute(A[x] , r[ y])]
+T[x, y − 1] Pr[Insert(r[ y])]
+T[x − 1, y] Pr[Delete(A[x])]

(6)

Assemblies containingmore than one contig
As we mentioned in the introduction, the output of an
assembler usually consists of a (large) set of contigs rather
than one single contig, representing the genome being
assembled. In the extreme case, an “assembler”may return
the set of unassembled input reads (or the set of all k-
mers in De Bruijn-based assemblers) as its output. Our
likelihood score must be modified to account for such
fragmented assemblies.
In practice, most assemblers join contigs only if they

overlap by more than a certain number of bases; how-
ever, we only consider the case where contigs are non-
overlapping substrings of the true genome. In this case,
the length of the original genomemust be at least the sum
of the lengths of the contigs, that is,

∑
Lj, where Lj is the

length of the jth contig. Therefore, the probability of every
read is at most:

nr
2

∑
Lj (7)

Overlapping contigs can be handled by reducing the
length of the contigs by a value representing the mini-
mum overlap required by the assembler, as performed, for
example, in Genovo [19].

Reads that do not align well
In practice, popular assemblers do not incorporate every
read in the assembly. Possible reasons include assembly
errors (such as collapsed tandem repeats), reads with high
error rates, or contamination in the DNA sample. These
“singleton” or “chaff” reads cannot bemodeled by our like-
lihood approach as the likelihood of any assembly that

does not incorporate every read is zero. When sequencing
errors are modeled, every read obtains a non-zero likeli-
hood, even if it does not align to the assembly. Since, in
general, a non-trivial fraction of the total set of the reads
cannot be mapped to the assembly, by their sheer num-
ber, the singleton reads would dominate the probability
calculation.
To account for this factor, we argue that for any read

that does not align well, the overall probability of the
assembly should not be lower than the probability of the
same assembly when the missing read is appended to
its sequence as a separate contig. The effect of such an
addition on the overall probability can be calculated as fol-
lows. First, the probability of observing this read exactly,(
Pr[exact match]

2L

)
, is multiplied to the product of the prob-

abilities of all mapped reads. Second, the probabilities
of the mapped reads are decreased slightly due to the
increase in the length of the assembled sequence.
For simplicity, let us assume an error-free model where

each read maps to exactly one position on the assem-
bled sequence. Let k denote the number of the original
reads. The ratio between the new probability for all orig-
inal reads divided by their probability before adding the
new read is:

1
(L+l)k

1
Lk

=
(

L
L + l

)k
=

(
1 − l

L + l

)k
≈ e−

lk
L

Therefore, if the probability of observing a read is less
than

Pr[exact match]
2L

e−
l|R|
L , (8)

we consider this read as “unmapped” and use formula (8)
as its probability. The probability of an exact match
Pr[exact match] is approximated by (1 − ε)l, where ε is
the probability of an error (a mismatch, an insertion, or a
deletion).

Performance considerations
Estimating the average read likelihood by sampling
Depending on the specific characteristics of the chosen
sequencing model, the computation of the probability
Pr[R|A] can be expensive for the dataset sizes commonly
encountered in current projects (tens to hundreds of mil-
lions of reads). In such cases, we can approximate the
likelihood of an assembly by using a random subset of the
reads R′ ⊆ R. To counteract the effect of the size of the
sample on the computed probability, we define the assem-
bly quality as the geometric mean of the individual read
probabilities:

AP(R′) =
(∏
r∈R′

pr

) 1|R′|
(9)
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The logarithm of this value (Log Average Probability
(LAP)) is reported in the remainder of the paper as the
assembly quality “score”:

LAP(R′) = log10
(
AP(R′)

) =
∑

r∈R′ log10 pr
|R′| (10)

In other words, we define the assembly quality as the
average log likelihood of the reads given an assembly. This
formulation also allows us to estimate the accuracy of the
approximate likelihood value produced by sub-sampling
the set of reads. According to sampling theory, the distri-
bution of the scores across multiple samples has the mean
equal to the true likelihood of the assembly (computed
from all the reads) and a standard error proportional to

1√|R′| , i.e., the larger the sample is, the more accurate
our estimation is for the likelihood of the true assembly.
Since the probability of a read is bounded by formula (8),
the variance of the sample can also be bounded by this
value.
In practice, we increase the sample size until the assem-

blies can be unambiguously distinguished by the LAP
value. Specifically, we increase the sample size, by binary
search, until the LAP values are separated by at least a sin-
gle standard deviation. The level of subsampling required
will, thus, be dependent on the extent of the differences
between the assemblies — for very different assemblies,
low levels of subsampling are sufficient.

Approximating the likelihood value using an aligner
Alternatively, when it is impractical to calculate exact
probabilities for large sets of reads, we can approxi-
mate these probabilities using fast and memory-efficient
alignment search programs, which internally model the
sequencing process. We use Bowtie 2 [29] to align the
reads to the assembly. However, our programs are easy to
adapt for any read alignment tool that stores the alignment
results in SAM [30] format.
For each reported alignment, we use the number of sub-

stitutions s to compute the probability pr . The probability
of this alignment, pr,j, can be approximated by εs(1−ε)l−s

and

pr =
∑

j∈Sr pr,j
2L

, (11)

where Sr is the set of alignments in the SAM file for the
read r.
We can further extend this equation to mated reads.

A pair of mated reads aligns if the distance and orien-
tation of the alignment of the pair are consistent with
the experimental design parameters. Given read i1 and its
mate i2, we compute p(i1,i2) by multiplying the probabili-
ties of individually aligning each mate at their respective

positions with the probability that they are separated by
their distance from each other. That is,

p(i1,i2) =
∑

(j1,j2)∈S(i1,i2)
pi1,j1pi2,j2 Pr[insert(j2 − (j1 + l1))]

2(L − l)
,

(12)

where pi1,j1 = εs1(1− ε)l1−s1 . Mate pair insert sizes follow
a normal distribution with mean and standard deviation
being estimated from the parameters of the sequencing
process. Unless otherwise stated, the standard deviation
is 10% of the insert size. If only one of the mates, i1 or
i2, maps, the probability p(i1,i2) is 0. We use (8) to set the
probability for this case.
In our experiments, Bowtie 2 was used to approximate

the read probabilities for the larger datasets; however, it
could be substituted with any other aligner.

Data sets
The read data for Rhodobacter sphaeroides 2.4.1 was
downloaded from http://gage.cbcb.umd.edu/data/Rhodo
bacter_sphaeroides, and the corresponding reference
sequence was obtained from the NCBI RefSeq data-
base (NC_007493.1, NC_007494.1, NC_009007.1, NC_
007488.1, NC_007489.1, NC_007490.1, NC_009008.1).
In addition, two more Rhodobacter genomes were
selected as reference genomes, specifically R. sphaeroides
ATCC 17025 (NCBI IDs NC_009428.1, NC_009429.1,
NC_009430.1, NC_009431.1, NC_009432.1), and R.
capsulatus SB1003 (NC_014034.1, NC_014035.1).
The read data for Stapylococcus aureus USA300 was

downloaded from http://http://gage.cbcb.umd.edu/data/
Staphylococcus_aureus, and the corresponding reference
sequence was obtained from the NCBI RefSeq database
(NC_010063.1, NC_010079.1, NC_012417.1). In addi-
tion, two more Stapylococcus genomes were selected
as reference genomes, specifically S. aureus 04-02981
(CP001844), and S. epidermidis ATCC 12228 (AE015929,
AE015930, AE015931, AE015932, AE015933, AE015934,
AE015935).
The read data for human chromosome 14 was down-

loaded from http://gage.cbcb.umd.edu/data/Hg_chr14/,
and the corresponding reference sequence was obtained
from the NCBI RefSeq database (NC_000014.8).
The Assemblathon 1 competition evaluates assemblies

on the simulated short read dataset generated from
the simulated 110 Mbp diploid genome. The compe-
tition provides sequence libraries with varying insert
sizes (200-10,000 bp) and coverage (20-40x). Assem-
blathon 1 allowed teams to submit multiple entries, but
for our analyses, we only examine the top ranking assem-
blies from each team. The raw reads and the consensus
sequence of the top ranking assemblies were downloaded

http://gage.cbcb.umd.edu/data/Rhodobacter_sphaeroides
http://gage.cbcb.umd.edu/data/Rhodobacter_sphaeroides
http://http://gage.cbcb.umd.edu/data/{Staphylococcus}_aureus
http://http://gage.cbcb.umd.edu/data/{Staphylococcus}_aureus
http://gage.cbcb.umd.edu/data/{Hg}_chr14/
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from http://korflab.ucdavis.edu/Datasets/Assemblathon/
Assemblathon1/.
Also used in our analyses is the E. coli K12 MG1655

dataset, generated using Illumina MiSeq technology (300
bp insert size, 370× coverage) (http://www.illumina.com/
systems/miseq/scientific_data.ilmn).
For detailed software usage, please see Additional file 1.

Results
Performance-related approximations do not significantly
affect the likelihood score
The full and exact computation of the assembly likelihood
score is computationally intensive and ultimately imprac-
tical for the analysis of large genomes sequenced with
the next generation technologies. We have highlighted in
the Methods section several approaches that can be used
to reduce the computational requirements and allow the
application of our methods in practical settings, includ-
ing the computation of the likelihood score on the subsets
of the original set of reads and the approximation of the
score from the output of an alignment program. As we will
show below, our approximations do not affect the com-
parative ranking of the multiple assemblies derived from a
same dataset.

The likelihood score is robust under sampling
To assess the effect of subsampling, we relied on a collec-
tion of the assemblies of the human chromosome 14made
available by the GAGE assembly ‘bake-off ’. We sampled
random subsets of increasing size (one trial per size) from
the over 60 million reads and computed the likelihood
score based only on the sampled reads.

As seen in Figure 1, the overall ranking of the differ-
ent assemblies stabilizes after sampling just 10,000 reads,
i.e., less than 0.02% of the entire dataset. After this point,
the scores of individual assemblies differ by more than the
standard deviation of the sub-sampled scores, indicating
the relative ranking of the assemblies can be determined
with high statistical confidence. This result suggests a
practical strategy for computing the assembly likelihood
wherein datasets of increasing size are repeatedly sam-
pled from the set of reads until the likelihood scores of
the compared assemblies can be distinguished from each
other. The search for the appropriate sample size can start
from a reasonable ‘guess’ (e.g., 0.05% of the total set of
reads), which is then iteratively doubled until the like-
lihood scores are separated from each other by a given
multiple of the sampling-induced standard deviation.

Aligner-based approximation correlates with the
dynamic-programming computation of the likelihood score
As outlined in the Methods section, we relied on an align-
ment program (in our case, Bowtie 2 [29]) to estimate the
likelihood of individual reads based on their alignment
along the assembly. This approach is substantially faster
than the more accurate dynamic programming algorithm
that computes the cumulative likelihood of all possible
alignments of a read against the assembly.
Figure 2 compares the per-read likelihood values with

respect to the complete genome sequence of Staphylococ-
cus aureus, using data provided by theGAGE competition.
In this plot, each read is represented by a point whose
coordinates represent the corresponding likelihood scores
computed through full dynamic programming (y axis) and
from Bowtie 2 alignments (x axis). As the full dynamic
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Figure 1 LAP-based evaluation of the assemblies for the human chromosome 14 via sampling. The x-axis represents the number of sampled
reads. For each assembly, we plot the corresponding LAP on a chosen subsample along with the standard deviation. The relative ranking of
assemblies becomes fixed with 10,000 reads, which is less than 0.02% of the original reads.

http://korflab.ucdavis.edu/Datasets/Assemblathon/Assemblathon1/
http://korflab.ucdavis.edu/Datasets/Assemblathon/Assemblathon1/
http://www.illumina.com/systems/miseq/scientific_data.ilmn
http://www.illumina.com/systems/miseq/scientific_data.ilmn
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Figure 2 Comparison of the read probability calculation methods for S. aureuswith 4,788,174 reads. Each mark on the plot represents a
single read. The read’s position is determined by the probability calculated from our dynamic programming method (y-axis) and Bowtie 2 (x-axis).
Points on the line y = x denote reads that were given the same probability by both methods. Since Bowtie 2 only finds the best alignment, it usually
reports a slightly lower probability. A probability threshold of 1e-30 is shown for the dynamic programming method. The read probabilities that fall
below this threshold would be rounded up to 1e-30 during LAP computation.

programming approach sums over all possible alignments,
the corresponding likelihood values are higher (points
occur above the diagonal) than those estimated by Bowtie
2. The difference between the two methods becomes less
noticeable as the likelihood increases as more of the prob-
ability mass is concentrated around the best alignment of
a read to the reference.

The likelihood scores correlate with reference-based
validation
The recent assembly competitions GAGE [16] andAssem-
blathon 1 [15] relied on a combination of de novo and
reference-based metrics to compare and rank different
assemblies. For the majority of these datasets, a complete
or high-quality draft sequence was available, allowing the
authors to objectively determine all the errors in the
assemblies by aligning them to the reference sequences.
Based on this information, the GAGE and Assemblathon
1 teams proposed several assembly quality metrics that
simultaneously capture some aspects of the contiguity and
correctness of an assembly. Here we compare our de novo
likelihood score to these reference-based metrics.
Generally, the de novo LAP scores agree with the

reference-corrected contiguity values (see Tables 1, 2,
and 3). Furthermore, the reference genome assembly
(assumed to be the most correct reconstruction of the
genome being analyzed) achieves the highest LAP score

while the references derived from the closely-related
organisms are considerably worse than all the other
assemblies. In other words, the de novo LAP scores
accurately capture the relative quality of the different
assemblies.
It is important to note that there are several excep-

tions to these general observations. In the case of S.
aureus USA300 (Table 2), the read-based LAP scores
for the Abyss assembly (computed on both contigs and
scaffolds) are better than those obtained for the refer-
ence genome, contradicting our intuition, since ABySS’s
reference-corrected contiguity is worse. This result high-
lights the importance of accurately modeling the sequenc-
ing experiment when computing the LAP scores. Once
mate-pair information is taken into account, the LAP
scores correctly identify the best assembly. This phe-
nomenon is due to the fact that the Abyss assembly is able
to incorporate more of the reads however their placement
in the assembly is inconsistent with the mate-pair linkage
information.
In the case of the human chromosome 14 assembly

(Table 3), the scaffold-based results do not agree with
the reference-corrected contiguity values: the CABOG
assembler outperforms Allpaths-LG in all but the cor-
rected scaffold N50 measure. This result highlights the
inherent difficulty of assessing the assembly quality even
when a reference sequence is available. In this case,
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Table 1 Rhodobacter sphaeroides 2.4.1 assembly evaluation

Contigs Scaffolds

Assembler LAP LAP N50 (kb) CN50 (kb) LAP reads LAPmates N50 (kb) CN50 (kb) Unaligned Unaligned

reads mates reads mates

(fraction) (fraction)

ABySS -20.924 -27.365 5.9 4.2 -20.929 -27.320 9 5 0.228 0.524

Allpaths-LG -20.795 -27.141 42.5 34.4 -20.796 -27.099 3,192 3,192 0.212 0.441

Bambus2 -21.528 -27.439 93.2 12.8 -21.531 -27.424 2,439 2,419 0.270 0.501

CABOG -22.550 -27.749 20.2 17.9 -22.550 -27.714 66 55 0.345 0.540

MSR-CA -21.496 -27.407 22.1 19.1 -21.497 -27.324 2,976 2,966 0.268 0.478

SGA -20.896 -27.575 4.5 2.9 -21.030 -27.416 51 51 0.237 0.541

SOAPdenovo -20.816 -27.160 131.7 14.3 -20.816 -27.152 660 660 0.214 0.453

Velvet -20.903 -27.314 15.7 14.5 -20.907 -27.246 353 270 0.219 0.471

R. sphaeroides ATCC 17025 -29.391 -29.973 3,218 3,218 -29.391 -29.973 3,218 3,218 0.813 0.904

R. capsulatus -29.953 -29.997 3,739 3,739 -29.953 -29.997 3,739 3,739 0.978 0.995

truth -20.769 -27.071 3,189 3,189 -20.769 -27.071 3,189 3,189 0.209 0.432

Assembly likelihood scores for Rhodobacter sphaeroides 2.4.1 from the GAGE project [15]. The results are presented separately for the contigs and scaffolds and include the number of unassembled reads (singletons), the LAP
scores computed on unmated reads (LAP reads) or mate-pairs (LAP mates), the N50 contig/scaffold sizes (N50), and the reference-corrected N50 contig/scaffold sizes (CN50). The best (maximum) value for each
genome-measure combination is highlighted in bold. The results for the reference assembly (either complete genome or high-quality draft) is given in the rowmarked truth. In addition, we provide the results for a closely
related strain and species. All values, except the LAP scores, were taken from the GAGE publication. A threshold probability of 1e-30 was used for calculating the LAP scores. The standard deviations for the LAP’s reads and
LAP’s mates scores are 0.00685 and 0.00969, respectively.
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Table 2 Staphylococcus aureusUSA300 assembly evaluation

Contigs Scaffolds

Assembler LAP LAP N50 (kb) CN50 (kb) LAP reads LAPmates N50 (kb) CN50 (kb) Unaligned Unaligned

reads mates reads mates

(fraction) (fraction)

ABySS -16.608 -24.692 29.2 24.8 -16.611 -24.584 34 28 0.318 0.522

Allpaths-LG -18.018 -23.974 96.7 66.2 -18.018 -23.760 1,092 1,092 0.374 0.494

Bambus2 -18.083 -24.256 50.2 16.7 -18.085 -23.899 1,084 1,084 0.375 0.503

MSR-CA -18.282 -24.258 59.2 48.2 -18.282 -23.926 2,412 1,022 0.389 0.508

SGA -17.937 -27.019 4 4 -18.250 -24.906 208 208 0.384 0.578

SOAPdenovo -17.830 -23.892 288.2 62.7 -17.830 -23.862 332 288 0.362 0.499

Velvet -17.867 -24.258 48.4 41.5 -17.867 -23.925 762 126 0.363 0.503

S. aureus 04-02981 -19.960 -25.314 2,821 2,821 -19.960 -25.314 2,821 2,821 0.456 0.572

S. epidermidis -29.635 -29.951 2,499 2,499 -29.635 -29.951 2,499 2,499 0.972 0.988

truth -17.741 -23.509 2,873 2,873 -17.741 -23.509 2,873 2,873 0.358 0.473

Assembly likelihood scores for Staphylococcus aureus USA300 from the GAGE project [15]. The results are presented separately for the contigs and scaffolds and include the number of unassembled reads (singletons), the LAP
scores computed on unmated reads (LAP reads) or mate-pairs (LAP mates), the N50 contig/scaffold sizes (N50), and the reference-corrected N50 contig/scaffold sizes (CN50). The best (maximum) value for each
genome-measure combination is highlighted in bold. The results for the reference assembly (either complete genome or high-quality draft) is given in the rowmarked truth. In addition, we provide the results for a closely
related strain and species. All values, except the LAP scores, were taken from the GAGE publication. A threshold probability of 1e-30 was used for calculating the LAP scores. The standard deviations for the LAP’s reads and
LAP’s mates scores are 0.00740 and 0.0105, respectively.
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Table 3 Homo sapiens chr 14 assembly evaluation

Contigs Scaffolds

Assembler LAP LAP N50 (kb) CN50 (kb) LAP LAP N50 (kb) CN50 (kb) CGAL Score Unaligned Unaligned

reads mates reads mates reads mates

(fraction) (fraction)

ABySS -18.473 -23.801 2 2 -18.474 -23.787 2.1 2 −15.21 × 108 0.257 0.504

Allpaths-LG -15.813 -21.413 36.5 21 -15.824 -21.314 81,647 4,702 −13.11 × 108 0.115 0.239

Bambus2 -18.606 -23.474 5.9 4.3 -18.642 -23.343 324 161 - 0.258 0.422

CABOG -15.625 -21.128 45.3 23.7 -15.626 -21.041 393 26 -12.25×108 0.109 0.229

MSR-CA -16.421 -22.428 4.9 4.3 -16.436 -21.861 893 94 - 0.122 0.276

SGA -15.712 -22.990 2.7 2.7 -16.909 -22.326 83 79 - 0.134 0.328

SOAPdenovo -15.702 -21.705 14.7 7.4 -15.734 -21.594 455 214 * 0.101 0.269

Velvet -18.000 -23.468 2.3 2.1 -18.140 -23.375 1,190 27 - 0.214 0.442

truth -15.466 -21.001 107,349.50 107,349.50 -15.466 -21.002 107,349.50 107,349.50 -11.25×108 0.093 0.211

Assembly likelihood scores for human chromosome 14 from the GAGE project [15] using a 10,000 read sample. The results are presented separately for the contigs and scaffolds and include the number of unassembled
reads (singletons), the LAP scores computed on unmated reads (LAP reads) or mate-pairs (LAP mates), the N50 contig/scaffold sizes (N50), and the reference-corrected N50 contig/scaffold sizes (CN50). The best (maximum)
value for each genome-measure combination is highlighted in bold. The results for the reference assembly (either complete genome or high-quality draft) is given in the rowmarked truth. In addition, we provide the results
for a closely related strain and species. CGAL scores calculated from the long insert library were taken from the CGAL publication. The authors only provided scores for the top three assemblies (Bowtie2 could not successfully
map reads to the SOAPdenovo assembly). All values, except the LAP and CGAL scores, were taken from the GAGE publication. A threshold probability of 1e-30 was used for calculating the LAP scores. The standard deviation
for both the LAP’s reads and LAP’s mates scores is 0.15.
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Allpaths-LG scaffold covers a larger stretch of the genome;
however, at the cost of errors both within the contigs
and in their relative placement. Furthermore, the CABOG
assembler is able to align nearly 0.1% more mate-pairs
than Allpaths-LG, despite having a far smaller scaffold
size.
The Assemblathon 1 competition [15] further demon-

strated the difficulty of accurately assessing the relative
quality of genome assemblies even when a correct ref-
erence sequence is available. The authors developed a
collection of quality metrics that measure the stretch of
a correctly assembled sequence (for example, contig path
NG50 and scaffold path NG50), the amount of structural
errors (such as insertions, deletions, and translocation),
the long range contiguity (for example, the average dis-
tance between correctly paired genomic loci), the num-
ber of copy number errors, and the coverage within the
assembly or only within coding regions. All these metrics
were computed with respect to two reference haplotypes,
from which the read data were simulated. The authors
ranked the different assemblies by each of the metrics and
used the combined information to rank the assemblies
quality.
In Figure 3, we compare the rankings provided by

our LAP score to the rankings generated by the Assem-
blathon 1 competition. In addition to LAP, the figure also

includes two variants of the most commonly used de novo
measure of assembly size, N50 – the weighted median
contig size, that is, the length of largest contig c such that
the total size of the contigs larger than c exceeds half of
the genome size. N50 uses the total assembly size as a
proxy for the genome size while the NG50 value uses a
guess of the actual genome size to compute the N50 value.
The more accurate estimation of the genome size results
in a better NG50’s ranking, confirmed by the concordance
with our LAP score.
The overall coverage measure (percentage of the refer-

ence haplotypes covered by a particular assembly) corre-
lates better with the LAP score than the other metrics.
This result is not surprising as the LAP score is strongly
affected by the number of the reads that can be correctly
mapped to an assembly, which is ultimately correlated
with the concordance between the assembly and the cor-
rect reference sequence. Interestingly, the overall rankings
differ between LAP and the conclusions of the Assem-
blathon 1 study. Our analysis suggests that the BGI assem-
bly is the best while the Assemblathon 1 picked the Broad
assembly as the winner. This discrepancy can be partially
explained in part by the Broad’s high performance within
the genic regions (LAP does not distinguish between genic
and inter-genic segments) and the large weight placed
on the BGI’s assembly’s poor performance in terms of
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Figure 3 Comparison between LAP scores and the rankings of the top assemblies generated in the Assemblathon 1 competition. The
colors represent the relative ranking provided by the individual metrics (best - green, worst - red): log average probability (LAP), overall coverage
(Cov tot), contig path NG50 (CPNG50), sum of all rankings from Assemblathon 1 (Overall), weighted median contig size based on estimated genome
size (NG50), coverage within coding sequences (Cov genic), scaffold path NG50 (SPNG50), length for which half of any two valid columns in the
assembly are correct in order and orientation (CC50), weighted median contig size based on total assembly size (N50), proportion of columns with a
copy number error (Copy num), total substitution errors per correct bit (Subs), and sum of structural errors (Struct). Column descriptions and
underlying data obtained from Table 3 in Earl et al. [15]. Columns are sorted according to the level of concordance with the LAP ranking. De novo
measures are highlighted in bold.
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substitution errors which have a relatively small effect on
the LAP score.
It is important to note that while LAP and the Assem-

blathon 1 results disagree in the exact total ranking of the
assemblies, the top 11 assemblies are the same, meaning
they are fundamentally of better quality than the remain-
ing 9 assemblies presented in the Assemblathon 1 paper.
In fact, the Assemblathon overall score jumps from 74 for
the 11th (WTSI-P) assembly to 99 for the 12th (DCSISU)
assembly, indicating a substantial qualitative difference.
This is also reflected in the corresponding jump in the
LAP score from -37.326 to -39.441 for the 11th (DOEJGI)
and 12th (NABySS) assemblies, respectively.

The effect of a contaminant DNA on the assessment of the
assembly quality
The Assemblathon 1 dataset provides an interesting chal-
lenge to the assembly assessment. The simulated libraries,
generated in this project from the human chromosome
13, also included approximately 5% of the contaminant
DNA from an Escherichia coli genome to simulate com-
monly encountered laboratory contamination that possi-
bly occur due to the fragments of the cloning vector being
sequenced along with the genome of interest. The partic-
ipants to the Assemblathon 1 competition were given the
option to either remove the contaminant DNA prior to
assembly or retain the corresponding sequences in their
assembly. This decision has little effect on comparison
between the resulting assembly and the correct reference

genome in the Assemblathon 1; however, the ability of
an assembler to correctly reconstruct the contaminant
genome significantly affects the corresponding LAP score.
Indeed, the LAP score (Figure 4) computed from the

entire set of reads (the red crosses) and that com-
puted after the contaminant reads were removed (the
blue crosses) are strongly correlated, the latter scores are
slightly lower since they were computed on the smaller
dataset. In several cases, the assembly was performed
after removal of the contaminant DNA (see “jumps” in
Figure 4). These assemblies are penalized by our frame-
work for not assembling the contaminant DNA, a penalty
that is removed once the same set of reads is used for both
assembly and quality assessment.
It is important to stress that the LAP scores can only

be meaningfully compared across the assemblies gener-
ated from the same read set. If a contaminant is known
it should either be removed from or retained within the
dataset for all assemblers being compared; otherwise, the
corresponding scores can not be directly compared. Note
that this property is not unique to our measure: ignoring
or assembling contaminant DNA also affects other tradi-
tional measures of quality, such as the N50 value or any
reference-based measures, for example, in the case where
the contaminant DNA shares significant similarity to the
genome being assembled.
In practice, a ‘contaminant’ is not known a priori, and

its definition depends on the specifics of an experiment.
In general, it is difficult, if not impossible, to distinguish
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Figure 4 Effect of a contaminant DNA on the computation of the LAP scores. Red crosses are the LAP scores computed on the entire read set
(including contamination). Blue crosses are the LAP scores computed only on the ‘true’ reads that map to the genome of interest. The
corresponding LAP scores are quite similar (those obtained from a smaller set of reads are correspondingly smaller) except for those of assemblies
that removed the contaminant DNA prior to assembly, and receive a boost in the LAP scores obtained on the “true” data.
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between environmental contaminants and true artifacts in
the data, both in the context of metagenomic projects and
in the case of isolate genomes. For example, the Bacillus
anthracis samples from the bioterror attack in 2001, which
were originally presumed to be uniform, contained a mix-
ture of very closely related strains, and the characteristics
of this mixture formed an important forensic marker in
the investigation [31].

A useful application: tuning assembly parameters
Our discussion so far has focused on comparing the
output of different assembly software with the goal of
choosing the best assembler for a particular dataset. The
developed probabilistic framework can also be used to
better choose the combination of parameters that allow a
particular assembly to achieve better results. To demon-
strate this use case, we target the task of selecting the
“best” (in terms of final assembly quality) k-mer length
for a de Bruijn graph-based assembler. We focus here
on SOAPdenovo assemblies of the Escherichia coli K12
MG1655 genome (Figure 5).
Without the availability of a reference sequence, users of

assembly software usually rely on the N50 value as a proxy
for the assembly quality. In this case, there is a clearly
defined peak in N50 at k = 79 (114,112 bp). After adjust-
ing for the assembly errors, there is a collection of the
assemblies (k = 47-51, 55-75) with nearly identical cor-
rected N50s (∼64,000 bp). These assemblies range in N50
from ∼80-115 kbp. Our de novo measure LAP shows a
clear peak at k = 87, which corresponds to a corrected
N50 of 59,352 bp. It is important to note that despite
roughly a 7% difference from the peak in corrected N50
(k = 63), the best LAP assembly contains 4 fewer indels
larger than 5 bp, while also aligns roughly 54,000 more
reads.
Alongside our LAP, we plot the likelihoods calculated

from another assembly evaluator framework, ALE [27].
The assembly with the highest ALE score (k = 79) corre-
sponds to the N50 peak. Compared to the LAP selected
assembly, the ALE selected assembly contains 10 more
indels larger than 5 bp and has a 49% drop from N50 to
corrected N50 compared to the 35% drop between those
values for the LAP’s selected assembly.

Discussion and conclusions
In this paper, we have proposed a paradigm for the de
novo evaluation of genome assemblies. While the general
paradigm could, in principle, be used to provide an objec-
tive score of assembly quality, our practical implementa-
tion of this paradigm, called the Log Average Probability
(LAP), is dataset specific and should only be used to pro-
vide relative rankings of different assemblies of the same
dataset. Unlike traditional measures of assembly contigu-
ity (such as the N50 value), our reference-independent

LAP scores correlate with reference-based measures of
assembly quality.
We would like to stress that de novo measures of

assembly quality, such as ours, are critically needed
by researchers targeting an assembly of yet unknown
genomes. The specific characteristics of the data being
assembled have a significant impact on the performance
of genome assemblers (in the Assemblathon 1 [15] and
GAGE [16] competitions, for example, different assem-
blers ‘won’ the competition depending on the analyzed
dataset); thus, the reference-based quality assessments
cannot be reliably generalized to new genome projects.
In our paper, we have made a number of simplifying

assumptions for modeling the sequencing process; specif-
ically, that the sequencing process is uniform (both in
the coverage, and the error profile), and that the reads
are independently sampled from the genome (with the
exception of the dependence imposed by mate-pair exper-
iments). While our approach can detect copy number dif-
ferences (unless the entire genome is exactly duplicated),
it is with the caveat that sequencing biases within repet-
itive regions can possibly mask mis-assemblies. More
precise models of the sequencing process that relax these
assumptions can be easily incorporated into our frame-
work (e.g., effects of G/C content on sequencing depth,
or technology-specific error profiles). We plan to create
technology-specific variants of our score to keep up with
the rapid changes in the characteristics of the sequencing
data as new instruments and/or chemistries become avail-
able. Furthermore, the probabilistic framework presented
here can be used to incorporate other types of informa-
tion on the assembly quality, for example, optical mapping
data [17].
In our assembler parameter-tuning experiment, we gen-

erated assemblies of Escherichia coli K12 MG1655 using
every allowed k-mer value. While this approach may be
computationally feasible for smaller genomes, it is inef-
ficient for very large, complex genomes. One solution
would be to use an optimization strategy for selecting
potential k-mer values, e.g., with simulated annealing.
While there are differences between the LAP score and

recent likelihood-based metrics, ALE and CGAL, these
differences are quite small (Table 3 and Figure 5). Thus, it
is important to discuss the technical improvements over
ALE and CGAL. ALE’s score did not perform quite as
well as our LAP score on the parameter tuning experi-
ment, and CGAL is unable to evaluate all of the GAGE
assemblies due to the technical limitations of Bowtie 2.
Bowtie 2 was not designed for reporting all read align-
ments, which makes it very slow on large genomes. This
problem will become more prevalent as sequencing costs
continue to decrease, allowing for more complex genomes
to be sequenced and assembled. Our framework over-
comes CGAL’s limitations by allowing users to calculate
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Figure 5 Tuning SOAPdenovo k-mer parameter using LAP. LAP, N50, and corrected N50 are plotted for various SOAPdenovo assemblies of
E. coli K12 MG1655 dataset for different k-mer sizes (k = 23-123). ALE [27] scores are plotted alongside the LAP to show the differences between their
underlying likelihood models. Also included is a breakdown of the errors along with the percentage of the unaligned reads for the various
SOAPdenovo assemblies. Two vertical lines (at k = 79 and k = 87) correspond to the maximum ALE and LAP score, respectively.

the LAP score via the dynamic programming method
on a subset of the reads or by using the SAM file pro-
duced from a read alignment tool designed for finding all
alignments (e.g., mrsFAST [32]).
Our original goal was not to detect assembly errors,

but to provide a global measure of how good an assem-
bly may be. We plan to extend our framework to detect
assembly errors by adopting a similar approach to that
demonstrated by ALE.
It is important to note that we have focused on a

very specific use case for assembly – the complete

reconstruction of a given genome. Assembly algorithms
are used in a number of other biological applications,
whose specific characteristics affect the validation of the
resulting assembly. For example, studies targeting the
genic regions of an organismmay tolerate large-scale rear-
rangements as long as the individual genes are correctly
reconstructed. In this context, the validation framework
would penalize substitution errors and small insertions or
deletions (which potentially affect gene structure) more
than mis-joins within intergenic regions. Such application
specific tuning is possible within the proposed overall
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framework, and we envisage the creation of a collec-
tion of community-supported modules that compute
application-specific LAP scores.
Our discussion has focused on the assembly of sin-

gle genomes, however the LAP score, as described, can
also be directly used in the context of diploid genomes
or metagenomic mixtures. In this case, our score implic-
itly assumes that the goal of the assembler is to correctly
reassemble both the sequence and the relative abundances
of the individual haplotypes. Assume, for example, a sim-
plemetagenomic sample that contains two organisms; one
that is twice as abundant as the other one. An assem-
bler that produces three sequences, corresponding to the
three ‘haplotypes’ in the sample (whether explicitly out-
putting two, perhaps identical, versions of the abundant
organism or reporting the copy-number difference in
some other way) would obtain a better LAP score than
an assembler that only reported two sequences without
any indication of their relative abundance. As a result,
the majority of metagenomic assemblers available today,
which only output the consensus sequence and not the rel-
ative abundance of the contigs, would score poorly under
our score. We hope that our work will inspire the develop-
ers of futuremetagenomic assemblers to also output infor-
mation on the relative abundance of the reconstructed
sequences, information that is critical to the analysis of the
data, yet rarely reported by existing tools.
Finally, we propose that measures such as ours, which

objectively capture the fit between the data being assem-
bled and the output produced by the assembler without
relying on curated reference data sets, become a standard
tool in evaluating and comparing assembly tools, allow-
ing the community to move beyond simplistic measures
of contiguity such as the ubiquitous N50 measure.

Additional file

Additional file 1: LAP framework software outline.
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