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Abstract

Background: A biomarker is usually used as a diagnostic or assessment tool in medical research. Finding an ideal
biomarker is not easy and combining multiple biomarkers provides a promising alternative. Moreover, some
biomarkers based on the optimal linear combination do not have enough discriminatory power. As a result, the
aim of this study was to find the significant biomarkers based on the optimal linear combination maximizing the
pAUC for assessment of the biomarkers.

Methods: Under the binormality assumption we obtain the optimal linear combination of biomarkers maximizing
the partial area under the receiver operating characteristic curve (pAUC). Related statistical tests are developed for
assessment of a biomarker set and of an individual biomarker. Stepwise biomarker selections are introduced to
identify those biomarkers of statistical significance.

Results: The results of simulation study and three real examples, Duchenne Muscular Dystrophy disease, heart
disease, and breast tissue example are used to show that our methods are most suitable biomarker selection for
the data sets of a moderate number of biomarkers.

Conclusions: Our proposed biomarker selection approaches can be used to find the significant biomarkers based
on hypothesis testing.

Keywords: Discriminatory power, Hypothesis testing, Optimal linear combination, Partial area under ROC curve,
Stepwise biomarker selection
Background
A biomarker is a biological indicator showing the ab-
sence, presence, or the condition of a disease, and it can
be used to determine the status of a subject, the effect-
iveness of a treatment, and so on. Ideally, a biomarker
with both high sensitivity and specificity for accurate
prediction is preferred. However, it is not easy to find
such a biomarker in practice. Combining biomarkers
provides an alternative to improve the performance of
those individual biomarkers that are currently available.
The serum prostate-specific antigen PSA is a typical ex-
ample. It is a well-accepted prognostic biomarker used to
screen for prostate cancer. However, this test has a low
specificity and therefore might lead to over-diagnosis and
over-treatment. In addition to PSA, several other alterna-
tives have also been investigated [1]. Nevertheless, there is
no single alternative which outperforms PSA, and therefore
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most investigators propose the use of a combination of
PSA and other biomarkers. The combination of PSA and
percent-free PSA is an alternative method [2]. Recently,
due to significant advances in biotechnology, many genetic
and genomic biomarkers have been discovered that could
be potential candidates [3]. Once their clinical evi-
dence is validated, integrating multiple biomarkers in
order to obtain a better prediction will become an es-
sential and important task.
The ROC curve is the most popular graphical tool for

evaluating the diagnostic power of a biomarker. It pro-
vides an exhaustive look at the trend of sensitivity over
all cutoffs, and thus provides information about the rela-
tionship between the sensitivity and the specificity of a
biomarker. However, the abundance of information it
provides makes the comparison between biomarkers dif-
ficult, because the underlying ROC curves are often
likely to cross. The area under the ROC curve (AUC),
which integrates the curve over all cutoffs, is proposed
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for an efficient summarization. This criterion can be ex-
tended by giving different weights at various cutoffs ac-
cording to, for example, the cost resulting from the
prediction error in the diseased or in the non-diseased
population, and the prevalence rate of the disease [4]. In
some applications, investigators focus only on a part of
the curve. For example, a high level of specificity is re-
quired for a biomarker serving as a population screening
tool. As a consequence, a biomarker is assessed on the
partial area under the ROC curve (pAUC) in a region of
specificity above a certain level [5-7].
This study focuses on combining multiple continuous-

scaled biomarkers into one single diagnostic or predict-
ive rule for a disease with emphases on assessment of
each biomarker. For better interpretability, we propose
the use of a linear combination for summarization. The
discriminatory power of a linear combination of bio-
markers is evaluated based on the pAUC. The optimal
linear combination, which provides the best discrimin-
atory power among all combinations, is the target solu-
tion of research interest.
In the presence of multiple biomarkers, a traditional

method of medical diagnosis is to fit a multiple logistic re-
gression model to the data set. An example of this is the
study of outcome prediction of aneurysmal subarachnoid
hemorrhage (aSAH) patients [8]. Alternatively, seeking the
maximal discriminatory power, the explicit form of the
best linear combination in terms of AUC under a binor-
mal model is derived [9]. Following their study, a solution
that is superior to all others in certain scenarios when a
high specificity or a high sensitivity is required was found
[10]. Nevertheless, these scenarios are not universal. The
use of empirical AUC estimates in finding the optimal lin-
ear combination was proposed [11,12]. In our earlier
study, we found that not only the analytical derivation, but
also the computation, became much more complicated
with the use of the pAUC criterion [13].
When an optimal linear combination is available, the

solution is useful in evaluating either the entire bio-
marker set or one specific biomarker in the set. For ex-
ample, the maximal pAUC of a biomarker set provides
the best discriminatory power that the biomarker set can
achieve. If even the best linear combination does not
have a significant discriminatory power, none of the bio-
markers should be considered to be associated with the
disease. In addition to the global predictability, some in-
sights on the importance of an individual biomarker can
be obtained from the coefficients in the optimal linear
combination. If a coefficient is nearly zero, the corre-
sponding biomarker contributes little to disease diagno-
sis and is regarded as less important. In this study, we
propose three testing procedures based on the optimal
linear combination maximizing the pAUC for assess-
ment of the biomarkers.
The proposed statistical tests will be embedded in two
stepwise biomarker selection methods to identify bio-
markers of statistical significance. It’s known that a clas-
sification is parallel to a diagnostic rule. Recently, in
order to deal with big data several algorithm-based clas-
sification approaches have been proposed which also dir-
ectly use either AUC or pAUC as the objective function
[14-21]. The computational feasibility and efficiency are
usually the major considerations in development of the
methods. One popular way is to add some penalty in the
optimization to stabilize the calculation. The penaliza-
tion naturally leads to variable selection, which is a de-
sirable outcome in an analysis of a huge data set. In
contrast, we consider the conventional stepwise selec-
tion methods, which select or discard a biomarker on
the basis of the statistical significance. However, acquir-
ing the evidence of significance necessitates inten-
sive computation. Therefore, our methods are most
suitable for the data sets of a moderate number of
biomarkers.
The paper is organized as follows: In the first part of

Section (Methods), the sample version of the optimal
linear combination will be defined. The testing procedures
for the global and individual discriminatory power will be
proposed in the second part of Section (Methods). Fur-
thermore, two biomarker selection approaches adopt-
ing the proposed tests will be developed in the third
part of Selection (Methods). Numerical results, includ-
ing an intensive simulation and real example analysis,
are given in the first part and the second part of Section
(Results). We then conclude this paper with a discussion
in Section (Discussions). Finally, conclusions are given in
Section (Conclusion).

Methods
Let X be a random vector of p biomarkers related to the
disease of a subject, and D be the binary disease status,
where D = 1 indicates a subject from the diseased popu-
lation, and D = 0 indicates a subject from the non-
diseased population. Suppose

X D ¼ d∼MVN μd;Σdð Þ; d ¼ 0; 1;j

where the covariance matrices Σ0 and Σ1 are positive
definite. For any given real vector a ∈ℝp, the linear com-
bination of p biomarkers, aTX, has a distribution as
follows:

aTX D ¼ d∼N aTμd;Qd

� �
;

��
where Qd = aTΣda, for d = 0,1. Let Ф(·) denote the cu-
mulative distribution function of N(0,1) and Ф-1(·) be its
inverse function. Also c(u) =Φ− 1(1 − u) and Δμ = μ1 − μ0,
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then for a given threshold at specificity (1-u), the sensi-
tivity of aTX is equal to

F a; uð Þ ¼ Φ
aTΔμ−c uð Þ ffiffiffiffiffiffi

Q0
pffiffiffiffiffiffi

Q1
p

� �
:

Therefore, for a given specificity region (1-t,1) for some
predetermined t ∈ (0,1), the partial area under the ROC
curve (pAUC) of the linear combination, aTX, is equal
to

pAUC að Þ ¼
Z t

0

F a; uð Þdu: ð1Þ

Similar to the AUC, the pAUC has the scale invariant
property. For identification purposes, in this study the
search for the optimal linear combination vector is re-
stricted to the hyper-sphere with a unit radius. Let a* be
such a pAUC maximizer; that is,

a� ¼ arg max
a∈Ep

pAUC að Þ;

where Ep = {a|‖a‖ = 1, a ∈ℝp}.
Assume two independent random samples are drawn

from the non-diseased and diseased populations. Let n0
and n1 be the sample sizes of the non-diseased and dis-
eased groups, respectively, and denote their minimum as
n =min {n0,n1}. Under the normality assumption, the
maximum likelihood estimates (MLEs) are employed in
a sample version of the optimization problem, when the
population parameters are unknown. The estimated mean
vectors and covariance matrices are respectively denoted

as follows: μ̂0 , μ̂1 , and Σ̂0 , Σ̂1 . Moreover, let Δ̂μ ¼ μ̂1‐μ̂0

and Q̂d ¼ aTΣ̂da , for d = 0,1. Replacing the unknown
parameters in Equation (1) by their corresponding
MLEs, we have a sample version of the pAUC below:

pAUC^n að Þ¼∫
t

0
F̂ n a;uð Þdu; ð2Þ

where

F̂ n a; uð Þ ¼ Φ
aT Δ̂μ−c uð Þ

ffiffiffiffiffiffi
Q̂0

q
ffiffiffiffiffiffi
Q̂1

q
0
B@

1
CA:

Thus, the coefficients a* are estimated by the maximizer
of Equation (2):

ân ¼ arg max
a∈Ep

pAUC^n að Þ:

The next theorem shows that the sample pAUC
maximizer ân, is strong consistent.
Theorem 1: Suppose that the conditional distribution
of X|D = d follows N (μd, Σd) and Σd is positive definite
for d = 0,1. Assume that pAUC (a) in Equation (1) has a
unique maximizer a* in Ep. Then the maximizer, ân , of
the sample pAUC, pAUC^n að Þ, in Equation (2) converges
to a* with probability 1 as n→∞. (The proof is given in
Additional file 1).
Previously, we found that the pAUC function sometimes

has local extrema or multiple maxima [13]. Therefore, we
proposed a multiple-initial algorithm, which utilizes mul-
tiple initial points in a conventional optimization algorithm,
to reduce the risk of not finding the global maximum. The
uniqueness of the maximum is assumed in Theorem 1 to
ease the complications brought on by the existence of mul-
tiple maxima.
In real applications, occasionally the calculated best linear

combination had a low pAUC value, or some coefficients in
the best linear combination were found to be nearly zero.
Numerically, the relevant biomarkers might have a limited
contribution to the disease prediction. In the following sec-
tion, we will discuss how to assess the significance of
biomarkers in terms of their discriminatory power. The pro-
posed testing procedures will be utilized in our biomarker se-
lection approaches to find a compact biomarker set which
consists of only significant biomarkers for disease diagnosis.

Hypothesis testing and biomarker selection
Testing the discriminatory power
When an optimal linear combination is available, the so-
lution is useful in evaluating either the entire biomarker
set or one specific biomarker in the set. The first hy-
pothesis testing problem of interest is to assess the over-
all discriminatory power of a biomarker set through its
maximal pAUC, which is the best discriminatory power
that the biomarker set can achieve. Once the overall
diagnostic power is “statistically confirmed,” the next im-
portant issue is to evaluate the contribution of each bio-
marker. This type of information can provide more
insight about the causal relationship between each bio-
marker and the disease. In this subsection, the statistical
procedures for testing the discriminatory power of a set
or of an individual biomarker are developed.
Considering only the class of linear combinations, we

evaluate the global discriminatory power of a set of p ≥ 1
biomarkers, X, by testing the following hypotheses:
H0,g: The biomarker set has no discriminatory power to

the disease
versus
H1,g: The biomarker set has a discriminatory power to

the disease.
The null hypothesis H0,g is true if the optimal linear
combination of the biomarker set has no discriminatory
power. Or equivalently, the maximal pAUC that the set
can achieve through its linear combinations is not
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greater than the reference limit t2/2, which is the pAUC
value of the non-informative diagnosis with a diagonal
ROC curve. That is,

H0;g : pAUC a�ð Þ≤ t
2

2
versusH1;g : pAUC a�ð Þ > t2

2
:

By maximizing the sample pAUC defined in Equation
(2), we obtain the maximal sample pAUC and use it as
the test statistic. That is,

Tg ¼ max
a∈Ep

pAUC^n að Þ ¼ pAUC^n ânð Þ

¼
Z t

0
Φ

âT
n Δ̂μ−c uð Þ

ffiffiffiffiffiffi
Q̂0

q
ffiffiffiffiffiffi
Q̂1

q
0
B@

1
CAdu:

In fact, Tg is the estimated pAUC of the best linear com-
bination ân

TX . The null hypothesis H0,g is rejected if Tg

is sufficiently large.
Due to the complex formulation of the test statistic, the

null distribution and the right-tailed critical value are esti-
mated by a parametric bootstrapping method. Under H0,g,
X has a common multivariate-normal distribution in the
two population groups. The common mean and covari-
ance matrix are estimated from the pooled sample, and
are denoted as ~μp;

~Σp . Consider drawing two independent

random samples of size n1 and n0 from the estimated

common null distribution, MVN ~μp;
~Σp

� 	
. Then use the

bootstrap samples to find the test statistic, say T g
bð Þ: Re-

peat the sampling B times. The critical value at the signifi-
cance level α is then equal to the 100 (1-α)th percentile

among these T g
bð Þ values. The null hypothesis H0,g is

rejected if Tg is greater than or equal to the critical value.
When a set consists of only one biomarker, say Xi, the

global effect becomes the marginal discriminatory power
of Xi alone. Using the correspondent pAUC to describe
its discriminatory power, we can assess the biomarker by
testing the following hypothesis:

H0;m : pAUC 1ið Þ≤ t
2

2
;

where 1i is the vector having zero components, except for
a 1 in the position correspondent to Xi. Again, we use the
estimated pAUC value as the test statistic,

Tm;i ¼ pAUC^n 1ið Þ

¼
Z t

0
Φ

μ̂1;i−μ̂0;i

� 	
−c uð Þ ffiffiffiffiffiffiffi

σ̂ 0;i
p

ffiffiffiffiffiffiffi
σ̂ 1;i

p
0
@

1
Adu;

where μ̂1;i; σ̂ 1;i and μ̂0;i; σ̂ 0;i are the MLEs of the mean
and variance of Xi in the two groups. The critical value
is determined by the parametric bootstrapping method
described previously. Here, only one single biomarker is
involved, so the computation is even simpler.
When multiple biomarkers, X are simultaneously

taken into account, we consider assessing one specific
biomarker given the existence of other biomarkers. Let
XT ¼ XT

i−;Xi
� �

, where Xi denotes the target biomarker
and Xi- includes the remaining ones in the set. Now the
goal is to test the following hypothesis:
H0c: Given Xi-, Xi has no discriminatory power to the

disease.
The coefficients of the optimal linear combination of
X are written as a�T ¼ a�Ti− ; a�i

� �
, where a�i is the corre-

sponding coefficient of Xi. In this problem, we propose
evaluating the biomarker Xi from a�i . Given Xi-, this
biomarker has no discriminatory power to the disease,
if it does not contribute to the linear combination in
terms of having a zero coefficient. That is, H0,c is equiva-
lent to

H0;c : a
�
i ¼ 0

The test statistic is the estimator of a�i ; denoted
by Tc;i ¼ ân;i . The null hypothesis H0,c is then rejected if
Tc,i is either too small or too large.
To generate the bootstrap samples, the null scenario

under H0,c is discussed. Under the normality assumption,
given D = d, d ∈ {0, 1},

X ¼ X i−

Xi

� �
D ¼ d e MVN

�
μd;i−
μd;i

� �
;

Σd;i− Σd;i−i

ΣT
d;i−i σd;i

� ��
:

������
Then in H0,c P(Xi|D, Xi −) = P(Xi|Xi −), which holds pro-
viding that for each realization, Xi- = xi-,

μ1;i þ ΣT
1;i−iΣ

−1
1;i− xi−−μ1;i−

� 	
¼ μ0;i þ ΣT

0;i−iΣ
−1
0;i− xi−−μ0;i−

� 	
;

σ1;i−ΣT
1;i−iΣ

−1
1;i−Σ1;i−i ¼ σ0;i−ΣT

0;i−iΣ
−1
0;i−Σ0;i−i:

Therefore, estimating the null distribution involves a
non-trivial constrained inference. For simplicity, we con-
sider a narrower null scenario, where P(Xi|D, Xi −) = P
(Xi). That is, within the two groups, not only does Xi

have a common distribution, but Xi is also independent
from Xi-. As a consequence, we then consider the fol-
lowing model for bootstrap samples: for d = 0,1,

XjD ¼ d∼MVN
μ̂d;i−
~μp;i

� �
;

Σ̂d;i− 0
0T ~σ p;i

� �� �
:

Notations μ̂d;i− and Σ̂d;i− represent the MLEs of the
mean and covariance matrix of Xi- respectively from the
two samples; ~μp;i; ~σ p;i are estimates of the mean and vari-
ance of Xi from the pooled sample; 0 is the (p-1) x 1 zero
vector. Repeat the bootstrap sampling B times, find the
sample pAUC maximizers of the bootstrap samples, and
record the B estimated coefficient â bð Þ

n;i correspondent to



Hsu et al. BMC Research Notes 2014, 7:25 Page 5 of 15
http://www.biomedcentral.com/1756-0500/7/25
Xi. The critical values are then the 100 (α/2)th and the 100
(1-α/2)th percentiles among the B coefficients. The null
hypothesis is rejected if the test statistic Tc,i is greater than
or equal to the 100 (1-α/2)th percentile, or is less than or
equal to the 100 (α/2)th percentile.
Note that this conditional test is powerless to detect

the significance of Xi when Xi- solely is independent of
the disease D. Under H0,c, it’s known that

P Xi;X i− DÞ ¼ P Xi X i−ÞP X i− DÞ:jðjðjð

Combining the fact that P(Xi-|D) = P(Xi-), it then leads to
the complete null scenario that all biomarkers are
independent of the disease. Under the circumstance, the
estimated coefficients have great variability subject to
the requirement of unit length in the algorithm. As a
consequence, the critical values become so extreme that
obtaining a significant finding is unlikely, even when in
fact Xi is strongly correlated with the disease.

Biomarker selection
We now turn to the biomarker selection problem. By
using the statistical tests in the last subsection, we are
able to determine the significance of a biomarker. The
amount of data is reduced by selecting the significant
biomarkers.
Assume that X is the vector of the full biomarker set

and let âT
n ¼ ân;1;…; ân;p

� �
be the estimate of the opti-

mal linear combination as before. We then employ the
idea of a classical stepwise variable selection method.
First, an ordering criterion for all biomarkers is deter-
mined. Here, the biomarkers are rearranged according
to their corresponding ân;i

�� �� values in ascending order.
The ordered biomarker set is denoted by XT = (X(1),…, X
(p)). Hence, X(1) is potentially the least important bio-
marker and X(p) is potentially the most important one.
Note that the ordering criterion is reasonable only when
all biomarkers are expressed in a common unit, hence
an adequate standardization should be applied before we
proceed to the selection procedure.
We consider two stepwise selection methods: the For-

ward and the Backward approaches. For convenience,
define A as the set of biomarkers under consideration
for the disease diagnosis in each step. The Forward pro-
cedure starts with a null A, and tests the contribution of
the potentially most discriminatory biomarker X(p). The
biomarker is added to A if it is significant. Then it con-
secutively assesses X(p-1), X(p-2) and so on. On the other
hand, the Backward procedure begins with testing the
overall discriminatory power of A = {X}. If there is a sig-
nificant global effect, one further determines whether the
potentially least discriminatory biomarker X(1) is significant.
Remove the biomarker from A if an insignificant result is
present. Given the result, this procedure consecutively
assesses the conditional contribution of X(2), of X(3) and so
on. The details are presented below:
Forward method
Step 1. Set A =Ø. Test the marginal effect of X(p) with

respect to
H0,(p) : X(p) has no discriminatory power.
If H0,(p) is rejected, add X(p) to A.
Go to the next step.
Step 2. Test the significance of X(p-1) with respect to
H0(p-1): Given A, X(p-1) has no discriminatory power.
If H0,(p-1) is rejected, add X(p-1) to A.
Go to the next step.
Step p. Test the significance of X(1) with respect to
H0,(1): Given A, X(1) has no discriminatory power.
If H0,(1) is rejected, add X(1) to A.
Stop.
Backward method
Step 0. Set A = {X}. Test the global effect of A with re-

spect to
H0,(0): A has no discriminatory power.
If H0,(0) is rejected, go to the next step; otherwise, stop

and conclude A =Ø.
Step 1. Assess X(1) by removing X(1) from A and test

the hypothesis,
H0,(1): Given A, X(1) has no discriminatory power.
If H0,(1) is rejected, add X(1) to A.
Go to the next step.
Step 2. Assess X(2) by removing X(2) from A and test

the hypothesis,
H0,(2): Given A, X(2) has no discriminatory power.
If H0,(2) is rejected, add X(2) to A.
Go to the next step.
⋮
Step p. Assess the effect of X(p). If A = {X(p)}, stop;

otherwise, remove X(p) from A and test the following
null hypothesis,
H0,(p): Given A, X(p) has no discriminatory power.
If H0,(p) is rejected, add X(p) to A.
Stop.
In the end of the selection process, we conclude that

the biomarkers in A have a significant contribution to
disease diagnosis. At Step 0 of the Backward approach,
the global test is conducted; see H0,g and Tg in Section
3.1. Moreover, during the selection, in testing the contri-
bution of a specific biomarker, two different tests are ap-
plied depending on whether A is empty or not. If A =Ø,
this is the problem of testing the marginal contribution
of the target biomarker; see H0,m and Tm,i in Section 3.1.
If A ≠ Ø, then the conditional contribution of the target
biomarker is tested; see H0,c and Tc,i in Section 3.1.
For a study of p biomarkers, the Forward approach

needs p tests for the final conclusion. However, the Back-
ward approach is not that simple. It might stop immedi-
ately at Step 0 if an insignificant global discriminatory
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power is obtained. When the global significance is
achieved and the first p - 1 biomarkers have all been con-
cluded to be insignificant, we directly draw the conclusion
of selecting only X(p) without verifying its significance. If
none of the above is the case, the evaluation of X(p) is ne-
cessary. Hence, the Backward approach may take 1, p or p+
1 test(s) to reach its final conclusion. The stepwise
method, which combines the forward and the backward
selections, is another potential approach. However, it will
take much longer computational time.
Sometimes a biomarker has no discriminatory power

by itself, but has a contribution given the existence of
other biomarkers. The contribution mainly comes from
high correlations with other major biomarkers. In a se-
lection procedure, this biomarker is likely to be selected.
However, given this biomarker, the conditional test is
powerless to detect other important biomarkers, as de-
scribed in the last subsection. As a consequence, the
Backward approach may produce a confusing conclu-
sion: select a minor biomarker but discard a major one.
On the other hand, because the Forward approach starts
by assessing the marginal contribution of every bio-
marker, it tends to yield less positive findings if the effect
sizes or the pAUCs of the biomarkers are small to mod-
erate. In the next section, we will further explain these
findings by way of a simulation study and real examples.

Results
In this section, we perform simulation results to validate
our proposed procedures, including the estimation of
the best linear combination of the biomarkers, the global
test of the discriminatory power of a set of biomarkers,
and the two biomarker selection approaches. We gener-
ate samples of two, three and four biomarkers (p = 2,3,4)
in various scenarios. To prevent the report from becom-
ing too lengthy, we only provide a discussion on the case
of two biomarkers and partial results for the cases of
three and four biomarkers. More numerical results are
provided in the additional files (see Additional file 1).
In the following, given the parameters values, the true

best linear combinations maximizing the pAUC are
found via grid-search with 106 grids. When the data di-
mension p ≤ 2, fixed grids are considered. When the
data dimension is greater than two, the grids are drawn
uniformly on the surface of a sphere [22,23]. On the
other hand, based on the sample data, the estimated best
linear combinations are computed via the multiple-
initial algorithm proposed in our previous study [13].
Assume that the two biomarkers X = (X1,X2)

T, given
D = d, follow a bivariate-normal distribution with mean
μd and covariance Σd, where d = 0 or 1 indicates a non-
diseased or diseased group, respectively. Suppose that
μ0 = 0 and consequently, μ1 is equal to the mean differ-
ence, μ1 = Δ = (Δ1,Δ2)

T. Three values, 0.3, 0.5, and 1 are
considered for Δi’s. To mimic a standardized data set,
the two biomarkers have unit variance, and correlation
coefficient ρd. The correlation coefficient ρd takes on
one of three values: 0, 0.5 or 0.9, see Table 1. Consider
the pAUC with t = 0.1. Table 1 also reports the distribu-
tion of a*T X in the two groups. Further, the last column
displays the true maximal pAUC values attained.
The first case is the complete null scenario, where the

two biomarkers have the same distribution in the dis-
eased and non-diseased groups. Each linear combination
provides no discriminatory power to the disease and has
the reference pAUC value t2 /2 = 0.005. Define a* = 0 in
this case. In Case 2–22, Δ1 = 0, Δ2 > 0, hence the second
biomarker is the dominant biomarker. In Case 2–4, the
two biomarkers are conditionally independent, and thus
the first biomarker is completely uncorrelated with the
disease while the second biomarker is the only contribu-
tor to the disease diagnosis. In Case 5–10, we find that
the first biomarker can provide a non-ignorable contri-
bution when it is correlated with the major contributor.
Comparing this with Case 2–4, we observe that the glo-
bal discriminatory power is significantly increased by the
presence of the positive correlation. To further investi-
gate the effect of correlation, we consider various covari-
ance matrices. The two biomarkers are correlated only
in the non-diseased group in Case 11–16, and only in
the diseased group in Case 17–22. It can be seen that
the existence of a positive correlation in the non-
diseased group has a greater improvement in pAUC than
in the diseased group. In the last three cases, Δ1 = Δ2,
ρd = 0, and hence both biomarkers are of equal import-
ance. The pAUC of the best linear combination in-
creases with the common mean difference as expected.
Next, we study the empirical performances of the pro-

posed estimated best linear combination ânð Þ and the
correspondent pAUC pAUC ânð Þð Þ. Consider a balanced
study, in which n0 = n1 = 100. In Table 2, the empirical
mean and standard error of these estimators among
1,000 replicates, denoted by Ave and SE, are reported.
In estimating the best linear combination, we find that

it tends to give conservative results that are biased to-
wards zero. The estimators have the greatest variations
in the complete null scenario, and the variations de-
crease as the discriminating power of the two bio-
markers increases. The estimated pAUC tends to
overestimate the true value, and similarly this tendency
increases as the set of the two biomarkers have a greater
diagnostic power. As suggested by a referee, the use of
an independent validation test set can be expected to re-
duce the over-estimation. The last column displays the
empirical power of the global discriminatory power test
at significance level α = 5% with bootstrapping size 500.
We find that the test controls the type I error rate well
and has satisfactory performance in alternative cases.



Table 1 The setting of populations

Mean difference Correlation Coefficients Non-diseased Diseased

Case Δ1 Δ2 ρ0 ρ1 a* a*Tμ0 Q0 a*Tμ1 Q1 pAUC(a*)

1 0.0 0.0 0.0 0.0 0.00 0.00 NA NA NA NA 0.0050

2 0.0 0.3 0.0 0.0 0.00 1.00 0.00 1.00 0.30 1.00 0.0088

3 0.0 0.5 0.0 0.0 0.00 1.00 0.00 1.00 0.50 1.00 0.0123

4 0.0 1.0 0.0 0.0 0.00 1.00 0.00 1.00 1.00 1.00 0.0245

5 0.0 0.3 0.5 0.5 −0.45 0.89 0.00 0.60 0.27 0.60 0.0095

6 0.0 0.5 0.5 0.5 −0.45 0.89 0.00 0.60 0.45 0.60 0.0138

7 0.0 1.0 0.5 0.5 −0.45 0.89 0.00 0.60 0.89 0.60 0.0292

8 0.0 0.3 0.9 0.9 −0.67 0.74 0.00 0.10 0.22 0.10 0.0163

9 0.0 0.5 0.9 0.9 −0.67 0.74 0.00 0.10 0.37 0.10 0.0290

10 0.0 1.0 0.9 0.9 −0.67 0.74 0.00 0.10 0.74 0.10 0.0690

11 0.0 0.3 0.5 0.0 −0.65 0.77 0.00 0.51 0.23 1.00 0.0164

12 0.0 0.5 0.5 0.0 −0.61 0.80 0.00 0.52 0.40 1.00 0.0204

13 0.0 1.0 0.5 0.0 −0.52 0.86 0.00 0.56 0.86 1.00 0.0333

14 0.0 0.3 0.9 0.0 −0.69 0.72 0.00 0.10 0.22 1.00 0.0367

15 0.0 0.5 0.9 0.0 −0.68 0.73 0.00 0.10 0.37 1.00 0.0422

16 0.0 1.0 0.9 0.0 −0.66 0.76 0.00 0.11 0.75 1.00 0.0567

17 0.0 0.3 0.0 0.5 0.56 0.83 0.00 1.00 0.25 1.46 0.0119

18 0.0 0.5 0.0 0.5 0.47 0.88 0.00 1.00 0.44 1.41 0.0148

19 0.0 1.0 0.0 0.5 0.24 0.98 0.00 1.00 0.97 1.23 0.0256

20 0.0 0.3 0.0 0.9 0.60 0.80 0.00 1.00 0.24 1.87 0.0144

21 0.0 0.5 0.0 0.9 0.53 0.85 0.00 1.00 0.42 1.81 0.0172

22 0.0 1.0 0.0 0.9 0.33 0.95 0.00 1.00 0.95 1.55 0.0270

23 0.3 0.3 0.0 0.0 0.71 0.71 0.00 1.00 0.43 1.00 0.0109

24 0.5 0.5 0.0 0.0 0.71 0.71 0.00 1.00 0.71 1.00 0.0167

25 1.0 1.0 0.0 0.0 0.71 0.71 0.00 1.00 1.41 1.00 0.0380
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Next, we apply the two biomarker selection ap-
proaches. At each step, the significance level is α = 5%
and the bootstrapping size is 500. There are four pos-
sible conclusions: (i) (c1,c2), if both biomarkers are se-
lected; (ii) (1,0), if only the first biomarker is selected;
(iii) (0,1), if only the second is selected; (iv) (0,0), if both
are discarded. If at least one biomarker is selected, the
best linear combination of the reduced biomarker set, as
well as its correspondent pAUC value, is solved. The
mean and the standard error of the maximal pAUC
among the non-empty reduced sets are reported in
Table 3. Table 4 lists the proportions of the four possible
conclusions of the two approaches among the 1,000 rep-
lications. In each scenario, the figure in boldface corre-
sponds to the most likely outcome.
From Table 3, we can see that the Forward approach

generally outperforms the Backward approach except in
the null case. When the first biomarker has a non-
ignorable contribution mainly due to the existence of a
positive correlation between the two biomarkers, such as
in Case 7–16, the Backward approach has unsatisfactory
performance. From Table 4, we find that in these cases,
a quite certain proportion of samples select only the first
biomarker, which in fact has no marginal discriminatory
power at all. More specifically, after obtaining a signifi-
cant global effect at step 0, the potentially less important
biomarker, which is likely the first one in the simulation,
is assessed. We often obtain significance due to the obvi-
ous decrease in pAUC caused by removing the bio-
marker. Next, the conditional discriminatory power of
the second biomarker, given the first biomarker, is
assessed. As explained in Section 3, the conditional test
is powerless when the given biomarker is independent of
the disease. Thus, this major biomarker is likely dis-
carded after the minor biomarker is selected.
On the other hand, in these scenarios the Forward ap-

proach, which begins by assessing the most discrimin-
atory biomarker, is not able to derive the benefits from
the correlation, and has less positive discoveries, as seen
in Case 8–9, 11–12 and 14–15. However, as the effect



Table 2 The related optimal coefficients a*, pAUC(a*), and the power of the global test
a1
* a2

* pAUC

Case True Ave SE True Ave SE True Ave SE Power(Tg)

1 0.000 −0.014 0.707 0.000 0.046 0.706 0.005 0.008 0.002 0.043

2 0.000 −0.005 0.552 1.000 0.763 0.337 0.009 0.011 0.003 0.271

3 0.000 0.016 0.427 1.000 0.892 0.147 0.012 0.014 0.004 0.631

4 0.000 0.018 0.238 1.000 0.970 0.042 0.025 0.026 0.006 0.999

5 −0.447 −0.331 0.473 0.894 0.779 0.245 0.010 0.011 0.003 0.349

6 −0.447 −0.400 0.294 0.894 0.859 0.126 0.014 0.015 0.004 0.731

7 −0.447 −0.428 0.129 0.894 0.892 0.059 0.029 0.030 0.006 1.000

8 −0.669 −0.655 0.098 0.743 0.746 0.067 0.016 0.018 0.004 0.895

9 −0.669 −0.666 0.039 0.743 0.744 0.035 0.029 0.030 0.006 0.999

10 −0.669 −0.668 0.019 0.743 0.743 0.017 0.069 0.070 0.006 1.000

11 −0.645 −0.569 0.324 0.765 0.694 0.299 0.016 0.017 0.004 0.907

12 −0.606 −0.598 0.116 0.795 0.787 0.100 0.020 0.021 0.004 0.995

13 −0.519 −0.514 0.088 0.855 0.852 0.052 0.033 0.034 0.005 1.000

14 −0.692 −0.659 0.215 0.722 0.689 0.212 0.037 0.037 0.004 1.000

15 −0.682 −0.680 0.050 0.731 0.730 0.049 0.042 0.043 0.004 1.000

16 −0.657 −0.656 0.024 0.754 0.754 0.020 0.057 0.057 0.005 1.000

17 0.563 0.407 0.441 0.826 0.686 0.412 0.012 0.013 0.003 0.505

18 0.467 0.436 0.238 0.884 0.853 0.157 0.015 0.016 0.004 0.799

19 0.239 0.234 0.163 0.971 0.958 0.042 0.026 0.027 0.005 0.999

20 0.604 0.451 0.438 0.797 0.653 0.423 0.014 0.015 0.004 0.792

21 0.529 0.498 0.232 0.848 0.812 0.195 0.017 0.018 0.004 0.923

22 0.325 0.326 0.123 0.946 0.936 0.044 0.027 0.028 0.005 0.999

23 0.707 0.603 0.364 0.707 0.607 0.368 0.011 0.013 0.003 0.478

24 0.707 0.664 0.241 0.707 0.667 0.237 0.017 0.018 0.004 0.903

25 0.707 0.696 0.117 0.707 0.698 0.117 0.038 0.039 0.007 1.000
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size of the biomarker increases, the Forward approach
has adequate power in identification of both important
biomarkers, and hence it has better performance in
terms of achievement of pAUC as seen in Table 3.
To investigate the robustness of our methods with re-

spect to deviation from the binormality assumption, we
generate 1,000 random samples of two biomarkers from
multivariate-t distributions with degree of freedom 3. In
Table 5, the true maximal pAUC value, pAUC(a*), is
found via a grid search under the multivariate-t distribu-
tion. Additionally, we report the average and the stand-
ard error of the estimated maximal pAUC value of the
reduced biomarker set, which is selected via our pro-
posed methods on the basis of binormality. We find that
in this case, our methods tend to produce optimistic
conclusions. The proposed pAUC estimation and the re-
sultant biomarker selection procedures are sensitive to
the binormality assumption.
Next, we study the cases consisting of three and

four biomarkers (p = 3 or 4). Again, assume μ0 = 0
and μ1 = Δ = (Δ1,…,Δp)
T. Further, the covariance matri-

ces are of the following form: for d = 0,1,

if p ¼ 3;Σd ¼
1 ρd 0
ρd 1 0
0 0 1

0
@

1
A; and if p ¼ 4;Σd

¼
1 ρd 0 0
ρd 1 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA:

The performance of the estimated pAUC of the best linear
combination of the full biomarker set, and that of the re-
duced biomarker set found from the two biomarker selec-
tion approaches, are presented in Table 6. Similar to the
cases of p = 2, we can see that the estimated pAUC tends
to overestimate the true value. By using the Backward ap-
proach, we are less likely to obtain a confusing conclusion
as in the case of p = 2. Currently, the two selection



Table 3 The pAUC and pAUC estimate after the
biomarker-selection

Forward selection Backward selection

Case pAUC(a*) Ave SE Ave SE

1 0.0050 0.0106 0.0016 0.0114 0.0018

2 0.0088 0.0120 0.0023 0.0129 0.0025

3 0.0123 0.0137 0.0032 0.0150 0.0033

4 0.0245 0.0250 0.0054 0.0248 0.0056

5 0.0095 0.0119 0.0024 0.0122 0.0030

6 0.0138 0.0140 0.0034 0.0138 0.0036

7 0.0292 0.0276 0.0080 0.0180 0.0099

8 0.0163 0.0125 0.0039 0.0092 0.0031

9 0.0290 0.0172 0.0093 0.0100 0.0040

10 0.0690 0.0628 0.0192 0.0077 0.0101

11 0.0164 0.0119 0.0026 0.0095 0.0027

12 0.0204 0.0145 0.0049 0.0118 0.0038

13 0.0333 0.0305 0.0091 0.0123 0.0095

14 0.0367 0.0149 0.0096 0.0085 0.0032

15 0.0422 0.0203 0.0141 0.0099 0.0048

16 0.0567 0.0526 0.0139 0.0075 0.0082

17 0.0119 0.0122 0.0028 0.0114 0.0027

18 0.0148 0.0135 0.0032 0.0139 0.0036

19 0.0256 0.0251 0.0056 0.0248 0.0059

20 0.0144 0.0120 0.0028 0.0102 0.0027

21 0.0172 0.014 0.0039 0.0128 0.0038

22 0.0270 0.0251 0.0059 0.0236 0.0067

23 0.0109 0.0123 0.0025 0.0131 0.0025

24 0.0167 0.0159 0.0047 0.0157 0.0044

25 0.0380 0.0387 0.0071 0.0387 0.0070
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approaches have comparable performance in most cases,
except Case 11 of p = 3 and Case 8 of p = 4.

Applications to real data sets
We apply our procedures to some real examples in
[10,24,25]. The 1-specificity upper limit is t = 0.1, the
stepwise significance level is α = 5%, and the bootstrap-
ping size is 500 during the biomarker selection. We use
a multiple-initial algorithm to find the estimated best
linear combinations of these real examples [13]. Before
the biomarker selection, standardization is conducted.
After subtracting the non-diseased group mean, every
biomarker is divided by its pooled sample standard devi-
ation from the two groups for a more constant unit
across biomarkers. In addition, the analytical results of
the data without standardization can be found in the
additional files (see Additional file 1). With regard to
the distributional assumption, it has been concluded
that the first two example data sets do not deviate
significantly from the binormality in their original papers
[10,24]. However, in the last example, we obtain signifi-
cant evidence (p-value < 0.0000) against the normality
hypothesis for both samples via the package myShapir-
oTest of R software. Although the binormality assump-
tion fails, this data set is still analyzed to demonstrate
the applicability of our proposed methods to larger data
sets. The famous algorithm-based variable selection
method, LASSO, is also applied to this example for
comparison.
The first example is a study of Duchenne Muscular

Dystrophy (DMD) [24]. The DMD carriers generally are
elevated by certain serum enzymes, not by physical
symptoms. The measurements of 3 biomarkers of DMD
of 87 normal and 38 carrier females were collected in
this data set. The sample means of the three biomarkers
in the normal and carrier groups are, respectively,

μ̂0 ¼ 3:393; 4:521; 2:486ð ÞT ;
μ̂1 ¼ 4:762; 4:523; 3:011ð ÞT ;

and the sample covariance matrices are

Σ̂0 ¼
0:032 −0:004 0:002
−0:004 0:007 0:001
0:002 0:001 0:011

0
@

1
A;

Σ̂1 ¼
0:768 −0:005 0:305
−0:005 0:009 −0:006
0:305 −0:006 0:227

0
@

1
A:

Table 7 presents the results of biomarker selection. Both
the Forward and Backward approaches select the first
and the third biomarkers. We find that the decrease in
the pAUC, which occurs when removing the second bio-
marker, is slim. The stepwise details are provided in
Table 8.
Another real example, four biomarkers (lutein,

TBARS, HDL cholesterol, and uric acid) are used for
construction of a classification tool for atherosclerotic
coronary heart disease [10]. A cohort of 434 subjects,
which includes 72 cases and 362 controls, was selected
for the analysis. One obtains an insignificant conclusion
in testing the null hypothesis of normality. For the non-
diseased and diseased groups, the estimated means of
the four markers are

μ̂0 ¼ 0:128; 0:885; 4:077; 6:772ð ÞT ;
μ̂1 ¼ 0:140; 0:934; 4:123; 6:911ð ÞT

and the two sample covariance matrices are



Table 4 The proportion of outcomes from the two biomarker selection methods among 1000 replications

Forward method Backward method

Case a�1 a�2 (c1,c2) (1,0) (0,1) (0,0) (c1,c2) (1,0) (1,0) (0,0)

1 0.000 0.000 0.001 0.036 0.051 0.912 0.000 0.019 0.024 0.957

2 0.000 1.000 0.002 0.040 0.416 0.542 0.001 0.042 0.228 0.729

3 0.000 1.000 0.005 0.012 0.799 0.184 0.003 0.031 0.597 0.369

4 0.000 1.000 0.015 0.000 0.984 0.001 0.007 0.006 0.986 0.001

5 −0.447 0.894 0.008 0.021 0.424 0.547 0.000 0.064 0.285 0.651

6 −0.447 0.894 0.011 0.007 0.788 0.194 0.002 0.066 0.663 0.269

7 −0.447 0.894 0.355 0.000 0.645 0.000 0.038 0.330 0.632 0.000

8 −0.669 0.743 0.030 0.000 0.394 0.576 0.006 0.242 0.647 0.105

9 −0.669 0.743 0.189 0.001 0.613 0.195 0.011 0.340 0.648 0.001

10 −0.669 0.743 0.884 0.000 0.115 0.001 0.026 0.891 0.083 0.000

11 −0.645 0.765 0.008 0.027 0.412 0.553 0.001 0.231 0.675 0.093

12 −0.606 0.795 0.077 0.008 0.713 0.202 0.009 0.167 0.819 0.005

13 −0.519 0.855 0.622 0.000 0.377 0.001 0.037 0.614 0.349 0.000

14 −0.692 0.722 0.062 0.013 0.380 0.545 0.006 0.300 0.694 0.000

15 −0.682 0.731 0.200 0.001 0.593 0.206 0.012 0.337 0.651 0.000

16 −0.657 0.754 0.898 0.000 0.102 0.000 0.027 0.876 0.097 0.000

17 0.563 0.826 0.013 0.030 0.430 0.527 0.001 0.074 0.430 0.495

18 0.467 0.884 0.015 0.019 0.769 0.197 0.006 0.057 0.736 0.201

19 0.239 0.971 0.027 0.000 0.973 0.000 0.015 0.020 0.964 0.001

20 0.604 0.797 0.011 0.023 0.417 0.549 0.004 0.149 0.639 0.208

21 0.529 0.848 0.034 0.006 0.775 0.185 0.012 0.086 0.825 0.077

22 0.324 0.946 0.073 0.000 0.926 0.001 0.025 0.059 0.915 0.001

23 0.707 0.707 0.011 0.304 0.367 0.318 0.005 0.234 0.239 0.522

24 0.707 0.707 0.165 0.391 0.408 0.036 0.113 0.402 0.388 0.097

25 0.707 0.707 0.965 0.014 0.021 0.000 0.964 0.017 0.019 0.000

Table 5 The related pAUCs based on multivariate t distribution with degree of freedom 3

Population (X) pAUC

Mean difference Correlation Forward selection Backward selection

Δ1 Δ2 ρ0 ρ1 pAUC(a*) Ave SE Ave SE

0.0 0.3 0.5 0.5 0.0070 0.0159 0.0057 0.0143 0.0062

0.0 0.5 0.5 0.5 0.0088 0.0165 0.0058 0.0140 0.0063

0.0 1.0 0.5 0.5 0.0160 0.0205 0.0074 0.0166 0.0083

0.0 0.3 0.5 0.0 0.0116 0.0175 0.0069 0.0108 0.0066

0.0 0.5 0.5 0.0 0.0136 0.0187 0.0079 0.0121 0.0075

0.0 1.0 0.5 0.0 0.0206 0.0224 0.0089 0.0147 0.0093

0.0 0.3 0.0 0.5 0.0088 0.0166 0.0058 0.0137 0.0062

0.0 0.5 0.0 0.5 0.0101 0.0168 0.0060 0.0143 0.0066

0.0 1.0 0.0 0.5 0.0150 0.0197 0.0067 0.0178 0.0073

0.3 0.3 0.0 0.0 0.0076 0.0158 0.0051 0.0149 0.0055

0.5 0.5 0.0 0.0 0.0101 0.0169 0.0059 0.0158 0.0063

1.0 1.0 0.0 0.0 0.0206 0.0241 0.0086 0.0225 0.0094
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Table 6 The related pAUCs and the global test for three and four dimensions

Full biomarker Set Reduced biomarker Set

Mean difference Correlation Forward selection Backward selection

Case Δ1 Δ2 Δ3 Δ4 ρ0 ρ1 True Ave SE Power (Tg) Ave SE Ave SE

p = 3 1 0.0 0.0 0.0 - 0.0 0.0 0.005 0.010 0.002 0.052 0.011 0.002 0.013 0.002

2 0.5 0.0 0.0 - 0.0 0.0 0.012 0.015 0.004 0.576 0.014 0.003 0.015 0.003

3 0.5 0.5 0.0 - 0.0 0.0 0.017 0.019 0.004 0.870 0.016 0.005 0.016 0.005

4 0.5 0.5 0.5 - 0.0 0.0 0.021 0.023 0.005 0.977 0.018 0.006 0.018 0.007

5 0.5 1.0 0.0 - 0.0 0.0 0.028 0.030 0.006 1.000 0.028 0.007 0.027 0.008

6 0.5 0.5 0.0 - 0.1 0.1 0.016 0.018 0.004 0.845 0.015 0.004 0.016 0.004

7 0.5 0.5 0.0 - 0.5 0.5 0.014 0.016 0.004 0.713 0.015 0.004 0.016 0.004

8 0.5 0.5 0.0 - 0.9 0.9 0.013 0.015 0.004 0.616 0.014 0.004 0.016 0.004

9 0.5 1.0 0.0 - 0.1 0.1 0.027 0.029 0.006 0.998 0.027 0.006 0.027 0.007

10 0.5 1.0 0.0 - 0.5 0.5 0.025 0.026 0.006 0.995 0.025 0.006 0.025 0.006

11 0.5 1.0 0.0 - 0.9 0.9 0.036 0.038 0.006 1.000 0.034 0.010 0.021 0.017

p = 4 1 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.011 0.002 0.051 0.011 0.002 0.012 0.002

2 0.5 0.0 0.0 0.0 0.0 0.0 0.012 0.016 0.004 0.520 0.014 0.004 0.015 0.003

3 0.5 0.5 0.0 0.0 0.0 0.0 0.017 0.020 0.004 0.862 0.016 0.005 0.016 0.005

4 0.5 1.0 0.0 0.0 0.0 0.0 0.028 0.031 0.006 1.000 0.028 0.007 0.026 0.008

5 0.5 1.0 1.0 0.0 0.0 0.0 0.041 0.043 0.007 1.000 0.042 0.008 0.042 0.008

6 0.5 1.0 0.0 0.0 0.1 0.1 0.027 0.029 0.006 0.995 0.027 0.007 0.026 0.007

7 0.5 1.0 0.0 0.0 0.5 0.5 0.025 0.027 0.005 0.993 0.025 0.006 0.025 0.006

8 0.5 1.0 0.0 0.0 0.9 0.9 0.036 0.038 0.006 1.000 0.035 0.009 0.021 0.017

9 0.5 1.0 1.0 0.0 0.1 0.1 0.040 0.042 0.007 1.000 0.041 0.008 0.041 0.008

10 0.5 1.0 1.0 0.0 0.5 0.5 0.038 0.040 0.006 1.000 0.039 0.007 0.039 0.008

11 0.5 1.0 1.0 0.0 0.9 0.9 0.048 0.050 0.007 1.000 0.047 0.009 0.049 0.008
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Σ̂0 ¼
0:003 −0:000 −0:000 −0:005
−0:000 0:029 0:004 0:042
−0:000 0:004 0:049 0:027
−0:005 0:042 0:027 0:285

0
BB@

1
CCA

Σ̂1 ¼
0:004 0:003 0:007 0:007
0:003 0:042 0:002 0:043
0:007 0:002 0:039 0:001
0:007 0:043 0:001 0:150

0
BB@

1
CCA:

;

From Table 7, we obtain a different optimal linear com-
bination of the full data set, in which the impact of the
Table 7 The estimated best linear combination and the corre

Case Method â1

DMD Full set (raw) 0.8350

Full set (Standardized) 0.9895

Forward Selection 0.9657

Backward Selection 0.9657

Heart disease Full set (raw) 0.9447

Full set (Standardized) 0.7079

Forward Selection 1.0000

Backward Selection 1.0000
first biomarker lutein is diminished, while those of the
other three are increased. Before the biomarker selec-
tion, the first two biomarkers, lutein and TBARS, seem
to be important to the disease as evidenced by the mag-
nitudes of their coefficients. However, after the bio-
marker selection, the two stepwise selections produce
the same conclusion that only the biomarker lutein
achieves statistical significance, as seen in Table 7 and 8.
The third example consists of 106 breast tissue sam-

ples [25]. Among them, 54 are classified as diseased and
52 as non-diseased. Nine biomarkers are available. The
sponding pAUC in DMD and heart disease examples

â2 â3 â4 pAUC^n

0.5116 0.2026 - 0.0888

0.0653 0.1292 - 0.0888

0.0000 0.2597 - 0.0885

0.0000 0.2597 - 0.0885

0.3258 0.0265 0.0274 0.0165

0.6754 0.0834 0.1890 0.0165

0.0000 0.0000 0.0000 0.0099

0.0000 0.0000 0.0000 0.0099



Table 8 The Forward and Backward selections in DMD and heart disease examples

I. Forward selection

Example Step Marker enters Test statistic Test value p-value Marker selected

DMD 1 X1 pAUC^ 0.0882 0.000* X1

2 X3 â3 0.1775 0.006* X1,X3

3 X2 â2 0.0653 0.272 X1,X3

Heart Disease 1 lutein pAUC^ 0.0099 0.012* lutein

2 TBARS âTBARS 0.7922 0.082 lutein

3 uric acid âuric acid 0.5091 0.258 lutein

4 HDL Chol âHDL C 0.3352 0.428 lutein

II. Backward selection

Example Step Marker enters Test statistic Test value p-value Marker selected

DMD 1 All pAUC^ 0.0888 0.000* X1,X2,X3

2 X2 â2 0.0653 0.272 X1,X3

3 X3 â3 0.1775 0.006* X1,X3

4 X1 â1 0.9841 0.000* X1,X3

Heart Disease 1 All pAUC^ 0.0165 0.002* lutein,TBARS, HDL Chol, uric acid

2 HDL Chol âHDL C 0.0834 0.632 lutein, TBARS, uric acid

3 uric acid âuricacid 0.1916 0.316 lutein, TBARS

4 TBARS âTBARS 0.7922 0.100 lutein

Note: * indicates a significance of α = 5%.
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data can be downloadable from the additional files (see
Additional file 2, [26]). Table 9 reports the results of the
two biomarker selections of the standardized data. The
biomarker set selected by the Forward method surpasses
the set selected by the Backward method. Further, the
two methods select two different sets of significant bio-
markers. While the Backward approach discards the bio-
markers more likely to be in the bottom group (in terms
of the magnitude of the correspondent coefficient in the
optimal linear combination of the full data set), the For-
ward approach does not select the four biomarkers with
the largest coefficients in the full model. The latter implies
an inconsistency between the coefficient of the optimal
linear combination and the marginal discriminatory power
of a biomarker. From an in-depth investigation, we found
that in these top four biomarkers the non-diseased popula-
tion is far more varied than the diseased population (see
Additional file 1). This leads to a low pAUC value and hence
an insignificance in testing the marginal discriminatory
Table 9 The estimated best linear combination and the corre

Method I0 PA500 HFS DA A

Full set −0.572 0.284 0.028 −0.296 −0

Forward 0.000 0.821 0.000 0.000 −0

Backward −0.731 0.000 0.000 −0.109 −0

LASSO (λmin) −0.572 0.284 0.028 −0.296 −0

LASSO (λ1SE) −0.088 0.992 0.000 0.000 0
power. In contrast, a biomarker with a more homogeneous
non-diseased population is preferred under the pAUC cri-
terion. Since our proposed methods do not terminate after
an insignificant finding, the impact of the variable ordering
during selection is narrowed.
For a comparison, we also report the result of the opti-

mal linear combination of the reduced biomarker sets,
which are selected using the LASSO. Two different λ’s
are used: the one achieving the minimum mean cross-
validation error, denoted as λmin; and the maximal value
such that the corresponding mean error is within 1
standard error of the minimum, denoted as λ1SE. From
Table 9, we find that using λmin in the LASSO produces
the most conservative selection, in which none of the
biomarkers are discarded. Using λ1SE, the LASSO selects
a quite different biomarker set from those selected by
our two approaches. This method is better than the
Backward method but is surpassed by the Forward
method for this application in terms of the sample
sponding pAUC in the breast tissue example

REA A/DA MAX IP DR P pAUC^n

.164 0.091 −0.038 0.391 0.560 0.059

.358 0.384 −0.223 0.000 0.000 0.058

.088 0.060 0.000 0.262 0.612 0.047

.164 0.091 −0.038 0.391 0.560 0.059

.000 −0.095 0.000 0.000 0.000 0.051
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maximal pAUC of the selected biomarker set. The ana-
lyses were performed by using the package cv.glment of R
software with deviance loss and 10-fold cross-validation.
These three biomarkers of the third example, I0, A/DA

and MAX IP were considered as the most discriminatory
biomarkers in original paper [25]. From Table 9, we can
observe that none of the biomarker sets selected by the
discussed methods include all three biomarkers at the
same time. One major reason for this is that the response,
which originally had a more detailed categorization of six
classes, is condensed into a binary variable here. Further,
the objective function of original paper was the accuracy,
while we consider the pAUC in this study [25]. Thus, dif-
ferent relevant statistical information is captured.

Discussion
In this study, we focus on disease diagnosis with the
presence of multiple biomarkers. We consider the class
of linear combinations for an effective and easy-to-
interpret summarization of the multiple biomarkers. The
diagnostic power of a linear combination is evaluated
based upon its pAUC over a clinically relevant threshold
region. To be more precise, we consider the requirement
of a high specificity for the purpose of population
screening.
Under the binormality assumption, the pAUC of a lin-

ear combination is estimated via the employment of
MLEs of the population parameters. In addition, the
strong consistency of the estimated optimal linear com-
bination is proved. We also introduce a testing proced-
ure to assess the overall diagnostic power of a set of
biomarkers based on the greatest pAUC it can achieve
in the class of linear combinations. Furthermore, a test-
ing procedure for determining the conditional contribu-
tion of a single biomarker given the existence of other
biomarkers is developed. The parametric bootstrap
method is applied to find the critical value(s) of the tests.
These proposed tests are then embedded in two bio-
marker selection approaches. The finite sample perform-
ance of the proposed methods is studied by using both
synthetic and real data sets. In addition, the robustness
of our approaches with regard to the deviation from the
binormality assumption is investigated via a simulation,
and a comparison of our biomarker selection methods
with the LASSO is conducted in a real data analysis.
Our methods differ with other algorithm-based marker-

selection approaches in that we propose to select or
discard a biomarker based upon evidence of statistical sig-
nificance. As a trade-off, our methods involve many com-
putations in order to acquire statistical evidence. This de-
creases the feasibility of applying these methods to larger
data sets. Consequently, our methods are less appropriate
in an exploratory study. We suggest the application of ad-
equate data filtering for dimension reduction prior to
advanced statistical confirmatory analysis, such as the con-
struction of a diagnostic rule.
One common issue of selecting biomarkers based on

the observed data is over-fitting. To prevent such a prob-
lem, one may use the method of cross-validation. This
method can be easily applied to our proposed procedure.
Hence, if the prediction power is the primary goal and the
over-fitting is a concern in a real application, then the in-
vestigators can easily integrate the cross-validation
method into our procedure. Although in this paper, we
did not discuss more on over-fitting, the bootstrap resam-
pling method we used in our procedure, which takes the
sampling variation into account, can guard against over-
fitting to some extents.
This research is conducted under the assumption that

the biomarkers follow a multivariate normal distribution.
The proposed statistical procedures are shown to be mod-
erately sensitive to the distributional assumption via a nu-
merical study. By using a non-parametric estimation of
the pAUC as an alternative (for example, the empirical
pAUC), the proposed methods can be generalized. But,
theoretical verifications are still necessary for the resultant
estimation of the optimizer. The non-smoothed functional
form greatly increases computational difficulty. Develop-
ment of non-parametric approaches may be more challen-
ging, yet they can be more broadly applied. However, this
topic is beyond the scope of our study.
Conventionally, a biomarker is often characterized by

its mean and variance. However, from the simulation, we
find that the correlation between biomarkers can play a
critical role yet is often less emphasized. The pAUC of
the linear combination of a set of biomarkers may be in-
creased by including another biomarker, which is indi-
vidually independent of the disease but highly correlated
with other important biomarkers. The improvement of
the pAUC can be substantial. Further, we observe that the
correlation between biomarkers in the non-diseased group
has a greater effect than that of in the diseased group. On
the other hand, from the real example we observe that a
biomarker with a more homogeneous non-diseased popu-
lation is more likely to have a greater pAUC.
Before proceeding to the proposed test-based biomarker

selection, suitable data standardization is recommended in
order to have a fair ordering of the biomarkers by their co-
efficients in the best linear combination. Different stan-
dardizations can lead to different results in the best linear
combination and hence differences in the ordering. How-
ever, in our methods, because all biomarkers enter the
evaluation process and are assessed by incorporating their
sampling variations, the effect of standardization is mini-
mized. In fact, in the first two real examples of this study,
the same conclusions are obtained with or without the
standardization, which shows that our test-based pro-
cedures are robust with respect to the choice of
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standardization. The analysis of the raw data is provided
in the additional files (see Additional file 1).
There are other options for ranking the biomarkers. For

example, consider a ranking based on the association be-
tween every individual biomarker and the disease response
measured by the p-value of a uni-variate t-test under the
normality assumption. Or, because our article emphasizes
the pAUC criterion, another possible ranking can be based
upon the estimated marginal pAUC, as well as the sampling
error, of a biomarker. However, these methods are more
computationally intensive, and furthermore, they are unable
to recognize associations between a biomarker and the dis-
ease in the presence of other biomarkers. Here, we propose
using the coefficients of the optimal linear combination of
the complete biomarker set as a ranking criterion. Our
ranking criterion is relatively simple and roughly maps out
biomarkers based on their importance. The limitation of
this method is that in order to avoid the computational dif-
ficulty, the sampling error is not taken into consideration.
We learn from one of the examples that an inconsistency
between the coefficient of the optimal linear combination
and the marginal discriminatory power may occur. Despite
this, there is no criterion of an early stop and every bio-
marker is evaluated throughout the biomarker selection
procedure in order to minimize the ranking effect.
As in a conventional regression analysis, we do not

apply any multiplicity adjustment to strictly control a
familywise type I error rate in the selection procedures.
However, if the investigators require a more confirma-
tory conclusion, a multiplicity adjustment may be neces-
sary. The Forward selection has a fixed number of steps,
and hence it involves a simple multiple comparison
problem. The conventional Bonferroni’s adjustment, by
using the significance level α/ p at each step, can be ap-
plied directly. The Backward selection may take 1, p or
p + 1 step(s) to reach the final conclusion. Then, the
simplest and most conservative way is to use the signifi-
cance level α/ (p + 1) at each step for a control of the
familywise error rate. Of course, with multiplicity adjust-
ment, the comparison of the two biomarker selection
approaches may yield different results.

Conclusions
Our proposed biomarker selection approaches can be
used to find the significant biomarkers based on hypoth-
esis testing.
Additional files

Additional file 1: The proof of Theorem 1 and more numerical results.

Additional file 2: Dataset with electrical impedance measurements
in samples of freshly excised tissue from the breast.
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