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DAMe: a toolkit for the initial 
processing of datasets with PCR replicates 
of double‑tagged amplicons for DNA 
metabarcoding analyses
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Abstract 

Background:  DNA metabarcoding is an approach for identifying multiple taxa in an environmental sample using 
specific genetic loci and taxa-specific primers. When combined with high-throughput sequencing it enables the 
taxonomic characterization of large numbers of samples in a relatively time- and cost-efficient manner. One recent 
laboratory development is the addition of 5′-nucleotide tags to both primers producing double-tagged amplicons 
and the use of multiple PCR replicates to filter erroneous sequences. However, there is currently no available toolkit for 
the straightforward analysis of datasets produced in this way.

Results:  We present DAMe, a toolkit for the processing of datasets generated by double-tagged amplicons from 
multiple PCR replicates derived from an unlimited number of samples. Specifically, DAMe can be used to (i) sort 
amplicons by tag combination, (ii) evaluate PCR replicates dissimilarity, and (iii) filter sequences derived from sequenc‑
ing/PCR errors, chimeras, and contamination. This is attained by calculating the following parameters: (i) sequence 
content similarity between the PCR replicates from each sample, (ii) reproducibility of each unique sequence across 
the PCR replicates, and (iii) copy number of the unique sequences in each PCR replicate. We showcase the insights 
that can be obtained using DAMe prior to taxonomic assignment, by applying it to two real datasets that vary in their 
complexity regarding number of samples, sequencing libraries, PCR replicates, and used tag combinations. Finally, we 
use a third mock dataset to demonstrate the impact and importance of filtering the sequences with DAMe.

Conclusions:  DAMe allows the user-friendly manipulation of amplicons derived from multiple samples with PCR 
replicates built in a single or multiple sequencing libraries. It allows the user to: (i) collapse amplicons into unique 
sequences and sort them by tag combination while retaining the sample identifier and copy number information, (ii) 
identify sequences carrying unused tag combinations, (iii) evaluate the comparability of PCR replicates of the same 
sample, and (iv) filter tagged amplicons from a number of PCR replicates using parameters of minimum length, copy 
number, and reproducibility across the PCR replicates. This enables an efficient analysis of complex datasets, and 
ultimately increases the ease of handling datasets from large-scale studies.
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Findings
Background
DNA metabarcoding is a powerful tool for the simultane-
ous identification of multiple taxa within an environmen-
tal sample through PCR amplification and sequencing of 
amplicons generated with primers that are specific for 
the taxonomical group of interest [1]. Prior to the advent 
of high-throughput sequencing (HTS), most DNA-based 
studies used PCR-based amplicons that were directly 
Sanger-sequenced [2] or hybridized [3], thus the scope was 
limited to the generation of relatively few sequences per 
sample. More recently, HTS platforms have been adapted 
into powerful and economic means for generating large 
datasets from many samples in parallel (e.g. [4–7]).

DNA extracts from the samples are typically PCR-
amplified using primers with 5′-nucleotide tags, ena-
bling the simultaneous sequencing of a large number 
of samples. It is recommended to tag amplicons at both 
extremities and to make more than one PCR replicate [8]. 
Although coupling metabarcoding with sequencing in a 
HTS platform considerably reduces the time-consuming 
steps of data generation per sample [1], it also confers 
challenges such as (i) handling of large datasets [9], (ii) 
identifications of erroneous sequences [10], and (iii) gen-
eration of tags with un-used tag combinations [11]. Given 
that the size of the generated datasets can be very large, 
they can only be handled through computational toolkits 
that perform the necessary basic processing of the raw 
data [9].

This initial processing is a key step with regards to data 
quality and can have serious implications on subsequent 
taxonomic assignment [12]. It is important to consider 
that different kinds of errors can originate both in the 
laboratory and during sequencing, thus various aspects 
have to be carefully addressed in this pre-taxonomy 
assignment phase [13]. For instance, potential cross-
contamination between samples, tagged primers and 
tagged amplicons can occur during the initial PCR tag-
ging step, and errors in the amplified sequences can arise 
due to base misincorporations and chimeric sequence 
formation [14, 15]. Once sequenced, these errors may 
overinflate biodiversity estimates [12]. Furthermore, HTS 
platforms produce sequences with specific patterns of 
nucleotide miscalling and insertion/deletion rates, which 
may result in different community profiles [16]. Another 
major challenge is the handling of datasets from proto-
cols that require the pooling of multiple tagged ampli-
cons prior to the so-called library building (preparation 
for sequencing) [17]. These sequencing libraries are often 
subject to blunt-ending and a final round of index-PCR 
amplification that can result in the so-called tag jump-
ing [8], meaning that sequences with unused tag com-
binations derived from used tags are formed [18, 19]. 

This problem is rarely acknowledged in the metabar-
coding literature, yet may lead to incorrect assignment 
of sequences to samples and artificially inflate diversity, 
unless the sequences can be identified and excluded from 
downstream analyses [8].

A number of DNA metabarcoding toolkits have been 
developed that include steps to model and detect PCR 
sequencing errors [20] and chimeric sequences [21]. 
Additionally, in silico PCR can be used to assess for 
primer bias [22]. Also, various laboratory methods have 
been developed to reduce the risk of erroneous sequence 
assignation in studies based on pooled amplicon data-
sets [23]. For example, double tagging of amplicons 
with matching tags is a means for increasing the accu-
racy of amplicon re-assignment to original samples [8]. 
A second aspect that has been implemented in labora-
tory methods is the use of PCR replicates as a means for 
optimal diversity detection and to discriminate PCR and 
sequencing artefacts from true biological sequences [24, 
25]. This is achieved by filtering out sequences according 
to copy number and presence across differently tagged 
PCR replicates (Fig. 1). Amplicons from each PCR rep-
licate are uniquely identifiable in the sequencing out-
put of each sequencing library by the tag combination 
they carry [26]. The same tag combination can be used 
for different PCR replicates when pooled into different 
sequencing libraries, yielding an even bigger scope for 
the number of samples that can be processed. This high-
lights the need for the availability of user-friendly tools 
to sort the sequences according to their tag combina-
tions and across PCR replicates and pools, with same tag 
combinations possibly occurring in different pools. Fur-
thermore, there is currently no available tool to extract 
all the relevant information from sequences across PCR 
replicates for a complete exploration of such datasets 
in order to take an informed decision on the filtering 
thresholds for the filtering step. Filtering is one of the 
most basic and important steps in metabarcoding analy-
ses. A tool developed to address all these issues would be 
a distinct addition to the currently available tools, which 
are not specifically designed to deal with this laboratory 
set up.

To address the above-mentioned needs, we present 
DAMe, a standardized metabarcoding toolkit for the 
straightforward processing of datasets consisting of dou-
ble-tagged amplicon sequences derived from an unlim-
ited number of samples subject to many PCR replicates 
and sequencing pools. Specifically, DAMe provides the 
means to (i) de-multiplex tagged pooled amplicons, (ii) 
identify sequences with unused tag combinations, which 
can arise due to e.g. tag jumping events and cross-con-
tamination by tagged primers or tagged amplicons, and 
(iii) filter out erroneous sequences, which can be due to 
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e.g. contamination, chimera formation, and PCR and 
sequencing errors. This allows the retrieval of a final 
output containing unique sequences sorted by used tag 
combinations from PCR replicates potentially in different 
pools retaining the information of the sample they derive 
from and their copy number in each replicate. These 
sequences are filtered using thresholds regarding the 
unique sequence’s minimum copy number and reproduc-
ibility across the PCR replicates [27]. DAMe also allows 
the evaluation of the influence of the filtering thresholds 
on the PCR and sequencing error detection that may 
impact the taxonomic characterization [28]. DAMe also 
provides a means to straightforwardly evaluate the total 
sequence similarity of the PCR replicates, thus their com-
parability. Overall, due to the simple, yet informative, 
nature of its output (Fig.  2), DAMe reduces the noise, 
size, and complexity of metabarcoding sequence datasets, 
so that they can be easily used for subsequent analyses 
and taxonomic assignment.

Datasets
We showcase DAMe using a total of three datasets, 
hereby referred to as datasets 1, 2, and 3. The samples 
were collected under licence from Natural England 
(20122272) and the Home Office (PPL 3002513 and PIL 
30/3261). Dataset 1 is a previously published double-
tagged dataset generated from 61 Natterers bat (Myotis 
nattereri) faecal pellets [25]. In summary, the dataset 
consists of ca. 157 bp (excl. primers and tags) arthropod 

mitochondrial CO1 mini-barcode amplicons. Prim-
ers were tagged at the 5′ end [4]. Each DNA extract was 
independently PCR amplified twice, with each replicate 
PCR being uniquely labelled by utilizing a different com-
bination of the 5′ tagged forward and reverse primers, 
e.g. F1-R3, where F1 means forward primer carrying the 
tag sequence with id 1, and R3 means reverse primer car-
rying the tag sequence with id 3 (see Additional file 1 for 
further details).

Dataset 2 (unpublished) consists of COI mini-barcodes 
amplicons generated from (i) greater horseshoe bat 
(Rhinolophus ferrumequinum) droppings and (ii) bulk 
insect samples. The primers were 5′ nucleotide tagged 
[4]. Each DNA extract was independently PCR ampli-
fied four times, with each replicate PCR carrying forward 
and reverse primers with matching tags, i.e. carrying the 
same tag sequence at both ends, e.g. F1-R1, F2-R2, etc. 
(see Additional file 1 for further details).

Lastly, we produced a mock dataset as a benchmark 
to evaluate the results of DAMe (dataset 3). Dataset 3 
was constructed by extracting the DNA from ten insects 
from known taxonomy and from which we also Sanger-
sequenced their COI mini-barcodes. Amplification of 
the COI mini-barcodes was performed as in dataset 2, 
with matching tag combinations. Four PCR replicates 
were performed on the insects mixed at equimolar DNA 
concentrations. See Additional file  1 for an extended 
description of the generation of this dataset and on the 
differences between the three datasets.

Fig. 1  Laboratory setup. In the scheme each unique sequence has a different colour, and the different tags are represented by the differences in 
the continuity of the blue lines at the ends of the sequence. a DNA is extracted and the targeted barcode is amplified from each sample. More than 
one amplification reaction is performed, each PCR replicate with different tag combinations. Afterwards, double-tagged amplicon products can be 
pooled and constructed into a sequencing library that is subsequently amplified prior to sequencing. b Erroneous sequences are filtered based on 
(1) identification of unused tag combinations (which may be due to tag jumping), (2) chimeric sequences identification with clustering algorithms, 
and (3) the sequence copy number and reproducibility across the PCR replicates
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DAMe tools
The tools in DAMe were developed to enable to follow-
ing data processing steps: (i) within pools, double-tagged 
amplicon sequences are sorted by their tag combina-
tion and are collapsed to unique sequences while retain-
ing copy number information, and (ii) across pools and 
within each sample’s PCR replicates, sequences are fil-
tered by user-defined filtering thresholds (copy number 
and number of PCR replicates a sequence should occur 
in). This allows discarding erroneous sequences that have 
not been produced in a minimum number of the PCR 
replicates from each sample at a minimum copy number, 
such as those produced by sequencing and PCR errors 
and contamination.

DAMe has three extra optional tools can be used for (i) 
chimera removal, (ii) evaluation of the sequence content 
similarity in the PCR replicates so that dissimilar PCR 
replicates such as those that can arise due to laboratory 
processing errors can be straightforwardly identified, and 
(iii) decollapsing the collapsed unique sequences. The lat-
ter allows for easier integration with other programs that 

may require the redundancy of the sequences either for 
taxonomic assignment or other downstream analyses, 
e.g. [29–32] (Fig.  2a). Additional file  2 contains further 
details such as command line examples of each tool.

Input files
DAMe requires as input a fastq file of tagged amplicon 
sequences that have already been trimmed of adapter 
and low quality sequences. Reads that were generated 
using paired-end sequencing must also be merged prior 
to their input into DAMe, using any of a number of 
available programs (e.g. [33, 34]). A text file containing 
information of each tag combination used for each PCR 
reaction of the samples is also required. All samples must 
have the same number of replicates. Specifically, this file 
requires the sample name, the forward tag id, the reverse 
tag id, and the pool identifier. A second text file must 
be provided with the name and the sequence of all the 
tags. And a third text file is also required containing the 
name of the targeted barcode, followed by the forward 
and the reverse sequence of the primers. If multiplexed 

Fig. 2  DAMe workflow. a DAMe initially sorts sequences by tag combination and collapses the repetitive sequences into unique sequences. An 
optional chimera removal step can be performed. With the resulting information a decision can be taken on the thresholds for filtering errone‑
ous sequences prior to taxonomy assignment. Renkonen similarity index can be optionally computed for every pair-wise PCR replicate in order to 
test for the comparability of the PCR replicates. Also, sequences can optionally be de-collapsed if later taxonomy assignment requires this. b From 
each step different output files are obtained, containing information from each sequence such as the sample source, identified tag combination, 
frequency, and PCR reproducibility
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PCRs were performed, the text should include the name 
and sequences of all the primer pairs used. Examples of 
the input files are provided in the repository from where 
DAMe is available. See the Availability of data and mate-
rials section and Additional file 2 for further explanations 
of input files and the structure of the working directory.

Sorting sequences
With the tool sort.py, DAMe initially separates the 
sequences within each pool based on their tag combi-
nation and trims the tag and primer sequences off the 
amplicon sequence. Post trimming, DAMe collapses the 
sequences into unique sequences, while retaining infor-
mation of their prior copy number. Sequences contain-
ing errors in the tag/primer sequence are discarded and 
the number of erroneous sequences is reported (Fig. 2b). 
Within each pool, text files are created for each tag com-
bination with information on the primers used and the 
unique sequences along with their copy number. Further-
more, a summary file is generated for each pool, which 
gives an overview of all tag combinations in the pool 
along with their unique and total number of sequences. 
See Additional file 2 for a detailed description of its out-
put files.

The deeper insights obtained solely from the sorting 
tool include: (i) the distribution of the copy number of 
the unique sequences, (ii) the abundance characterization 

of the sequences obtained from negative controls (if 
included on the laboratory set up), and (iii) identification 
of sequences with unused tag combinations. To examine 
these aspects, we first applied sort.py on datasets 1 and 
2 (Table  1). Although some programs exist for sorting 
tagged sequences, only a limited number allow process-
ing of double-tagged amplicons [9, 35–37]. However they 
are not straightforward to apply for sorting and filtering 
of sequences from datasets consisting of PCR replicates 
of a same sample that can furthermore be distributed on 
different pools. See Additional file 1 for an extended dis-
cussion on the sorting step.

Identification of unused tag combinations
Identification of mistagging patterns can be used to pro-
vide more information for accurate filtering of taxonomic 
diversity [11]. After sorting dataset 1 and 2, for both used 
and unused tag combinations we examined the number 
of unique sequences and their frequency through the 
output files from sort.py. Additionally, we analysed the 
possible tag jumping events in pool 1 from dataset 2. For 
this we used R v3.1.1 [38] to create a heat map using the 
copy number of the identified sequences with used as 
well as unused tag combinations (Fig. 4).

Prior to collapsing the amplicon sequences, the aver-
age copy number of each unique sequence from the 
unused tag combinations was 3 in both datasets; while 

Table 1  Summary of sequence abundance in the sorting and chimera removal steps of DAMe

a   Minimum; median; mean; maximum

DAMe information Number of sequences

Dataset 1 Dataset 2–pool 1

Initial input 184,396 total sequences 718,848 total sequences

Sequences with errors in tag/primer 45,932 (24.9 % of total input) 119,619 (16.64 % of total input)

Total sorted sequences 138,464 (75.1 % of total input) 599,229 (83.36 % of initial input)

Total sorted unique sequences 29,952 47,489

Unique sequences from used tags 24,215 (80.85 % of total unique sorted 
sequences)

36,540 (76.9 % of total unique sorted sequences)

Unique sequences per used tag combinationa 11; 160.5; 198.5; 1087 1; 552.5; 609; 1896

Frequencies of unique sequences per used tag  
combinationa

1; 1; 4.8; 3245 1; 1; 15.47; 32,400

Unique sequences from unused tag combinations 5737 (19.15 % of total unique sorted 
sequences)

10,949 (23.1 % of total unique sorted sequences)

Unique sequences per unused tag combinationa 6; 59.5; 98.9; 592 1; 3; 4.7; 640

Frequencies of unique sequences per unused tag 
combinationa

1; 1; 3.67; 1740 1; 1; 3.09; 11,699

Chimeric sequences 634 (2.62 % of total unique sequences  
of used combinations)

1308 (3.6 % of total unique sequences from used 
combinations)

Unique chimeric sequences per used tag combina‑
tiona

0; 3; 5.2; 61 0; 10; 21.8; 149

Frequencies of unique chimeric sequences per used 
tag combinationa

1; 1; 1.36; 21 1; 1; 4.76; 661
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the average copy number of unique sequences from 
used tag combinations was 5 and 15 on dataset 1 and 
2, respectively. Overall, the unused tag combinations 
are at low frequencies on dataset 1, although some also 
contain high frequency sequences (Fig.  3). The 20 for-
ward and 20 reverse tags used in dataset 1 produced 
sequences with the intended 122 tag combinations, and 
sequences with 58 unused tag combinations. The 60 for-
ward and 60 reverse tags in pool 1 from dataset 2 pro-
duced sequences with the 60 used tag combinations and 
sequences with 2323 unused tag combinations (Addi-
tional file 3). The total number of sequences was clearly 
higher for sequences with used tag combinations than for 
sequences with unused tag combinations (Fig. 4).

Another important aspect that can also be easily 
observed through the use of the sorting tool is the occur-
rence of some tags instead of others. For example, we 
observed a strong signal for tag combination F40-R40 
and F42-R40, but no sequences carrying the planned tag 
combination F42-R42. Inspecting the DAMe sorting out-
put across pools, we found this to be a general pattern, 
indicating that for F42-R42, F42-F40 was actually used. 
Another similar case appeared for tag combination F51-
R51, which seemed to actually be F53-R51. Such mix ups 

can arise in a number of steps, e.g. during primer synthe-
sis and primer preparation, and are particularly prone to 
occur when handling large number of samples, PCR rep-
licates, pools and tagged primers. Thus, the sorting tool 
in DAMe can be used to identify such events to correct 
the laboratory set up. This is very important, as the back-
bone of metabarcoding is the reliance on being able to 
correctly trace tagged sequences back to the PCR repli-
cates and thereby samples that they originated from. See 
Additional file  1 for deeper discussion on the sequence 
copy number.

Chimera identification
We then performed chimeric sequence identification in 
both datasets in a de novo fashion with chimeraCheck.py 
and characterized the amount of identified chimeras in 
both datasets. The chimera removal is performed on each 
pool using UCHIME [21] with default parameters either 
in a de novo or a reference based approach. This step is 
highly recommended [39], although not made part of the 
essential pipeline given that the user might apply other 
methods for removing chimeras. A total of 634 unique 
sequences were identified as chimeric in dataset 1 (2.62 % 
of total unique sequences of used tag combinations), and 
1308 in dataset 2 (3.6 % of total unique sequences from 
used tag combinations) (Table  1). Each of these chi-
meric sequences had a median frequency of one in both 
datasets.

Filtering sequences across PCR replicates for each sample
After sorting the sequences, DAMe can be used to filter 
out sequences that are assumed to be erroneous with fil-
ter.py. Although the input fastq for the first step in DAMe 
has been pre-treated with quality-filtering techniques 
(such as removal of adapter and low quality sequences), 
sequencing errors will still remain in the dataset [40–43]. 
Thus, a filtering step to reduce the presence of erroneous 
sequences is necessary. This is done under the assump-
tion that erroneous sequences are unlikely to occur mul-
tiple times by chance in the separate PCR replicates, and 
that such sequences are present in low copy numbers, as 
has been previously shown [12, 44, 45].

This stage requires the user to take an informed deci-
sion on the filtering thresholds [30], while ensuring a bal-
anced sequence diversity. This decision is helped from 
the output files of the sorting step in DAMe. Of particu-
lar aid for this decision is the output from sequenced 
positive and negative controls [24]. Specifically, the filter-
ing thresholds are (i) minimum number of PCR replicates 
from each sample containing a sequence in order to be 
retained (i.e. minimum sequence reproducibility, param-
eter y), (ii) the minimum number of copies required for 
retaining sequences within each PCR reaction, so as to 

Fig. 3  Summary of the sequence content from identified used and 
unused tag combinations. X-axis are the identified tag combinations. 
Red ticks on the rug at the X-axis represent unused tag combinations; 
blue ticks are used tag combinations. The green line is the number 
of unique sequences (total number of collapsed sequences) and the 
orange line is the sum of their copy numbers (total number of uncol‑
lapsed sequences) from identified used and unused tag combina‑
tions in dataset 1
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not be considered erroneous (parameter t), and (iii) the 
minimum length of the sequences to be retained (param-
eter l) (Fig. 2b). The filtering is performed for every sam-
ple, by comparing the collapsed unique sequences across 
the PCR replicates, which in turn can be spread across 
various pools. The thresholds are applied in the next 
order: (1) reproducibility, (2) minimum copy number, 
and (3) minimum length.

In order to explore the impact of the filtering thresh-
olds on the amount of filtered sequences, we used the 
unique sequences from used tag combinations derived 
after the sorting and chimera removal steps on data-
set 1. The thresholds examined include combinations of 
the following filtering criteria: (i) retention of sequences 
with a reproducibility of 2/2 and 1/2 (i.e. present in two 
and one out of the two PCR replicates, respectively), (ii) 
retention of each unique sequence per PCR with a mini-
mum copy number of one or two, and (iii) retention of 
only sequences with a minimum length of 157  bp. To 
this end, we applied filter.py with the next parameters: (i) 
y = 1, t = 1, (ii) y = 1, t = 2, (iii) y = 2, t = 1, and (iv) 
y = 2, t = 2.

The filtering parameter with the highest impact on the 
23,336 correctly tagged, unique sequences identified post 
chimera removal in dataset 1, is the minimum number of 
times a sequence has to be present in each PCR in order 

to be valid. The second most important parameter is the 
minimum sequence reproducibility across the PCR repli-
cates (Table 2). See Additional file 1 for an extended dis-
cussion on the filtering thresholds.

DAMe filtering thresholds benchmarking
Dataset 3 was a mock eDNA sample generated from a 
laboratory prepared mixture containing known species, 
at known and equal DNA concentrations, all of which 
had been CO1 mini-barcoded prior to the experiment. 
The use of this kind of mock dataset, in which the ampli-
fied sequence is known a priori, is useful for detection of 
error rates and for evaluating filtering strategies [13]. This 
dataset was therefore an ideal benchmark for calculating 
the true positive rate (TPR), true negative rate (TNR), 
false positive rate (FPR), and false negative rate (FNR) of 
sequences classified as derived from the real sample, or as 
derived from contamination, or sequencing/PCR errors 
in the filtering step performed by DAMe with filter.py. 
To this end we clustered with uclust v1.2.22q [46] all the 
unique sequences from the used tag combinations against 
our reference database of the 10 insect CO1 sequences. 
Given the species are from different families or genera, 
we clustered at 97  % identity. Sequences were classified 
as derived from the real insect if they clustered to one 
of the sequences in the database (TP), and classified as 
derived from contamination or sequencing/PCR errors 
otherwise (TN). To calculate the different rates, we iden-
tified which sequences were kept after the DAMe filter-
ing steps as well as which sequences discarded by DAMe 
belong to the TP and TN classes. Afterwards, operational 
taxonomic units (OTUs) were identified on the TP and 
FP sequences using uclust [46] with 97  % id and OTUs 
consisting of only one sequence were discarded.

The results show that no filtering at all (reproducibil-
ity of 1/4 and minimum copy number of 1) produces the 
highest TPR, but also the highest FPR (0.37) and the low-
est TNR (0.009) (Table 3). Amplicon sequence copy num-
ber is known to be inconsistent with specimen counts 
and biomass, but the use of other variables together with 
the sequence copy number aids in the analysis of the data 
[47]. In accordance with this, we observed that the sole 
inclusion of the minimum copy number filter produces 

Fig. 4  Heat map of the occurrence of tag combinations from dataset 
2–pool 1. Rows are the forward tags and columns are the reverse 
tags ids. Colours ranging from white to light blue represent sequence 
copy numbers from 0 to 100, derived from identified sequences with 
unused tag combinations. Colours ranging from dark blue to black 
represent high copy numbers (>100, up to thousands), usually from 
sequences with the matching tag combinations intended in the 
laboratory set up

Table 2  Impact of the filtering thresholds on dataset 1

a   y = minimum reproducibility; t = minimum copy number; l = minimum 
length

Repr–CopyNum Sorted clean Y y + t y + t + la

2 PCRs, 2 times 23,336 2472 862 802

2 PCRs, 1 time 23,336 2472 2472 2348

1 PCR, 2 times 23,336 20,864 4195 3995

1 PCR, 1 time 23,336 20,864 20,864 19,647
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a drastic decline in the FPR (0.076) and increase in 
the TNR (0.303), however at the cost of lowering the 
TPR (0.196). While the sole inclusion of the minimum 
sequence reproducibility has an overall slightly bet-
ter impact on the results (TPR =  0.211), we found that 
only a combination of both filtering thresholds causes 
a more drastic decline on the FPR, with the minimum 
reproducibility threshold accounting for most of the 
impact. Another important aspect is that very high fil-
tering thresholds might in fact have a negative impact on 
the TPR, with the minimum copy number having most 
of the impact. It is also interesting to note that in spite 
of the large impact on the number of filtered sequences 
with even very relaxed filtering thresholds, the actual 
number of identified insects is kept high, identifying the 
10 insects even with strict thresholds such as 4/4 repro-
ducibility and minimum 10 copy number. Thus, in this 
dataset the importance of the filtering mainly resides 
on the removed false positives that at later stages of the 
metabarcoding study can produce taxonomic misidenti-
fications (Table 3).

PCR replicates similarity
The tool RSI.py computes the Renkonen similarity index 
(RSI) [48] to assess how similar PCR replicates of the 
same sample are and thus test for the comparability of 
the PCR replicates of the same sample. This tool allows 
the user to quickly assess whether any pairs of PCR rep-
licates are completely different indicating that there is 
an issue in the input file or laboratory set up. Briefly, the 

RSI is computed based on the frequency of each unique 
sequence identified in each PCR replicate of each sam-
ple. The values range from 0 to 1, where 0 means that the 
PCR replicates are identical, and 1 means that there is no 
sequence shared between the PCR replicates. The out-
put file contains the mean RSI of the pair-wise compari-
son of the replicates per sample. It is also possible to get 
the RSI of every pair-wise comparison per sample (using 
the–explicit parameter). Although some laboratory set-
ups perform PCR replicates which are then pooled as a 
means to reduce sequencing costs, these replicates can 
have the same tag instead of a different tag for each rep-
licate [37]. However, the RSI can only be computed if it 
is possible to identify the sequences derived from each 
PCR replicate, meaning that each replicate should have 
a different tag combination. The examination of the RSI 
values is an important step given that the PCR replicates 
should produce comparable sequences and thus jus-
tify the use of the sequence reproducibility as a filtering 
threshold. The RSI can also help to easily pinpoint PCRs 
that should be considered for repetition.

In order to identify how comparable the PCR replicates 
are in datasets 1 and 2, and thus confirm the validity of 
their comparison to support the reproducibility of the 
sequences, we first used filter.py with y = 1 and t = 1 so 
that a sequence only had to be present in one PCR rep-
licate and in one copy. Subsequently, we used RSI.py to 
calculate the RSI of every pair-wise PCR replicate com-
parison of the frequencies of the sequences using an 
output file from filter.py. This allowed us to (i) evaluate 

Table 3  Filtering thresholds benchmarking dataset 3

Repr–CopyNum 97 % identity Correct OTU  
identifications

Incorrect OTU 
identifications

TPR FNR FPR TNR

1/4–1 0.622 0.000 0.370 0.009 10 111

1/4–2 0.196 0.426 0.076 0.303 10 28

1/4–5 0.063 0.558 0.026 0.352 10 14

1/4–10 0.020 0.601 0.019 0.359 10 12

2/4–1 0.211 0.411 0.069 0.310 10 18

2/4–2 0.092 0.530 0.016 0.363 10 12

2/4–5 0.022 0.599 0.007 0.371 10 6

2/4–10 0.007 0.615 0.005 0.374 10 4

3/4–1 0.112 0.510 0.019 0.359 10 6

3/4–2 0.047 0.574 0.007 0.371 10 4

3/4–5 0.009 0.613 0.004 0.375 10 4

3/4–10 0.005 0.616 0.002 0.377 10 2

4/4–1 0.049 0.572 0.006 0.372 10 3

4/4–2 0.018 0.604 0.004 0.374 10 3

4/4–5 0.005 0.616 0.002 0.376 10 3

4/4–10 0.004 0.618 0.002 0.377 10 2
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the comparability of the PCR replicates, and (ii) obtain a 
general overview of the reproducibility of the sequences 
across the PCR replicates.

Examination of the output from RSI.py can be used 
to easily identify problematic PCR replicates (Addi-
tional file 4), for example, an RSI of 0.6 has been pre-
viously defined as a threshold for the identification of 
highly dissimilar replicates [49]. The RSI values are 
mostly around 0.4, and drop at 0.6 on both datasets 
(Fig.  5a, b), and in dataset 2 almost all samples with 
mean RSI equal or very close to 1 are the negative con-
trols (Fig.  5; Additional file  5: Figure S1). The mean 
RSI and the RSIs from every pair-wise comparison of 
the four PCRs of the samples in dataset 2 showed that 
the samples that are not negative controls and that 
have a large RSI in some of the pair-wise PCR compar-
isons did not have a large RSI in all the pair-wise com-
parisons. For example, sample bF1 from dataset 2 had 
a RSI of 0.34 in the comparisons that did not involve 
one particular PCR replicate, while all the compari-
sons involving that particular PCR replicate produced 
an RSI of 1, showing that there was a mistake in one of 
the four PCR replicates, which should be repeated or 
excluded from the analyses. See Additional file 1 for a 
deeper discussion on the importance of the PCR repli-
cates similarity.

Sequence reproducibility characterization
Next, we deeper characterized the sequence reproduci-
bility across PCR replicates. To this end, we examined the 
distribution of the difference of the copy number of each 

unique sequence prior to applying the filtering thresh-
olds from the used tag combinations between the two 
PCR replicates in dataset 1. We also looked at the copy 
number of each unique sequence, taking into account 
the sequence reproducibility across the PCR replicates. 
To this end, exemplifying the general pattern observed in 
the samples, we used a randomly selected sample, pA1, 
from dataset 2 for deeper examination. Negative con-
trols also provide useful information that can later be 
used for deciding the filtering thresholds [50], thus we 
also investigated the sequence content of the extraction 
blank from the batch of that random sample from dataset 
2, Ex_Bl_p1.

We observed that the mean difference of the copy 
number of each unique sequence across the PCR rep-
licates ranged from 1 to 4 (Additional file 5: Figure S2). 
The most abundant sequences with a reproducibility 
of 1/4 are singletons, thus are expected to be erroneous 
sequences [51]. As copy number increases to 2, the abun-
dance of sequences with reproducibility of 1/4 greatly 
diminishes. The number of sequences with reproducibil-
ity between 1/4 and 1 is more similar at a copy number 
around 7 (Fig. 6a). In the examined extraction blank, the 
maximum copy number of a sequence is 18 (16 in one 
PCR and 2 in another), and besides a single sequence 
with reproducibility of 3/4 with a total frequency of 9, 
only sequences with reproducibility index of 1/4 and 2/4 
are obtained (Fig. 6b). As observed in the distribution of 
sample pA1, the abundance of sequences with 1/4 in the 
extraction blank sample greatly diminishes at a total fre-
quency of two.

Fig. 5  Renkonen similarity index values distributions of the pair-wise comparisons of the PCR replicates from dataset 1 and 2. a RSI values distribu‑
tion of dataset 1. b RSI values distribution of dataset 2. A value of 0 means that the sequences are identical, and 1 means that there is no sequence 
shared between the PCR replicates
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The informative output from DAMe assists the challenge 
of distinguishing low abundance sequences from contami-
nant or erroneous sequences. The use of positive/negative 
controls helps to verify the level of sequence detection to 
guide the selection of the minimum frequency threshold 
[24] and can be used to detect problems if they are higher 
than expected [50]. Also the repeated observation of unique 
sequences across the PCR replicates of a sample helps to 
distinguish low abundant sequences [52] from erroneous 
or contaminant sequences [53]. As we observed in dataset 
2, the number of unique sequences and their copy num-
ber in PCR blanks are very low, and the reproducibility of 
the sequences is related to their copy number (Fig. 6). See 
Additional file 1 for an extended discussion regarding the 
sequence reproducibility parameter.

Taxonomic identification
Examination of taxonomy assignment on various fil-
tering strategies can be used to evaluate the number of 
recovered OTUs and the assigned taxonomy [28, 54, 55]. 
To showcase the use of DAMe together with taxonomy 
assignment, we analysed in more detail the same previ-
ous randomly picked sample pA1 from dataset 2 using 
the sorted unique sequences without any further filtering. 
We used blast [56] against the nt database [57] (as in Feb-
ruary 2014) and MEGAN v4.70.4 [58] with min. support 
1, min score 50, top percent 10, win score 0.0 and min 
complexity 0.44. In particular, we looked at the number 

of unique sequences with reproducibility from 1/4 to 4/4, 
and their percentage of identity to Insecta alone (the tar-
get taxon), and to non-Insecta matches only.

The 1226 unique sequences from sample pA1 from 
dataset 2 resulted in 34 taxonomic assignations (Addi-
tional file  6). We observed that sequences with repro-
ducibility of 1/4 could also have a high similarity to 
insect reference sequences with the highest abundance 
at 99 % of sequence similarity. From the hits to species 
other than insects, we observe that sequences with a 
reproducibility of 1/4 are the only ones with large (93–
97 %) similarity and that sequences with reproducibility 
of 4/4 have no hits other than insects (Fig. 7). See Addi-
tional file 1 for an extended discussion regarding retro-
active filtering.

Conclusions
DAMe is a versatile toolkit to perform the basic, yet criti-
cal and informative, sorting and filtering steps of datasets 
generated with laboratory methods that involve double-
tagged amplicons, PCR replicates, and high-throughput 
sequencing of many pools of samples. DAMe is able to 
use the information provided by such datasets in order to 
easily identify sequences carrying unused tag combina-
tions and to guide on the decision of the filtering thresh-
olds. The processing steps included in DAMe are vital for 
the subsequent taxonomic profiling of the dataset. Given 
the effective size and complexity reduction of the initial 

Fig. 6  Unique sequence frequency and reproducibility across PCR replicates. a Distribution of the abundance of the ten lowest frequencies of the 
unique sequences in sample pA1 from dataset 2 according to their PCR reproducibility. b Distribution of the abundance of the frequencies of the 
unique sequences in extraction blank Ex_Bl_p1 from dataset 2 according to their PCR reproducibility
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dataset, the final output can be easily handled by the user 
in order to perform tests without the need of large com-
putational resources.
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