
Andersen et al. BMC Res Notes          (2019) 12:471  
https://doi.org/10.1186/s13104-019-4517-4

DATA NOTE

Transcriptomic changes in wheat during tan 
spot (Pyrenophora tritici‑repentis) disease
Ethan J. Andersen1, Shaukat Ali2 and Madhav P. Nepal1* 

Abstract 

Objectives:  Tan spot is a yield-reducing disease that affects wheat and is caused by the fungus Pyrenophora tritici-
repentis (Ptr). Eight races of Ptr have been identified based upon production of the effectors Ptr ToxA, Ptr ToxB, and Ptr 
ToxC. Wheat cultivars have also been characterized by their resistance and susceptibility to races of Ptr and sensitivity 
to the effectors. The objective of this research was to assess differences in gene expression between Ptr resistant and 
susceptible wheat cultivars when either inoculated with Ptr race 2 spores or directly infiltrated with Ptr ToxA.

Data description:  A greenhouse experiment was used to assess wheat-Ptr interaction. Wheat seedlings were grown 
for two weeks prior to the experiment under greenhouse conditions. Four treatments were used: (1) spray-inoculation 
with a suspension of Ptr spores (3000 spores/mL) (2) spray inoculation with water as a control (3) needleless syringe 
injection with Ptr ToxA, and (4) needleless syringe injection with water as a control. Plants were transferred to a 
humidity chamber and leaf sample were taken at 0, 8, and 16 h. After RNA extraction and sequencing, 48 RNA data-
sets are reported. This data will be useful in understanding how resistant wheat responds to Ptr compared to suscepti-
ble wheat.
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Objective
Tan spot is a yield-reducing disease that affects wheat 
and is caused by the fungus Pyrenophora tritici-repentis 
(Ptr) [1]. Eight races of Ptr have been identified based 
upon production of the effectors Ptr ToxA, Ptr ToxB, and 
Ptr ToxC. Races 1–8 produce the following toxins: A + C, 
A, C, none, B, B + C, A + B, and A + B + C, respectively 
[2–5]. Since Race 2 produces only Ptr ToxA, isolates of 
this race can be used to study the response of wheat to 
only Ptr ToxA. Wheat cultivars have also been character-
ized by their resistance and susceptibility to races of Ptr. 
The cultivar Glenlea, for example, is sensitive to Ptr ToxA 
but not the other toxins, whereas Salamouni is insensi-
tive to any of the toxins [6, 7]. Sensitivity to Ptr ToxA has 
been linked to presence of the susceptibility gene Tsn1 
[8]. Cultivars that are insensitive to Ptr ToxA have been 
found to possess Tsn1 genes with premature stop codons 

[8]. The objective of this research was to assess differ-
ences in gene expression between Ptr resistant and sus-
ceptible wheat cultivars when either inoculated with Ptr 
race 2 spores or directly infiltrated with Ptr ToxA. Under-
standing the differences between wheat responses trig-
gered by the toxin versus the entire pathogen will provide 
insight into the mechanisms behind how wheat detects 
pathogens.

Data description
Greenhouse experiment
Wheat seedlings were grown for two weeks in 3 × 9 cm 
plastic cones (Stuewe & Sons Inc., Tangent, OR, USA) 
under greenhouse conditions (16 h light, 8 h dark, 22 °C). 
Both tan spot resistant Salamouni and susceptible Glen-
lea cultivars were grown. Ptr race 2 isolate 86–124 was 
grown on V8-PDA medium plates [9], incubated in 
darkness for five days and flooded with water to disrupt 
colonies, following the methods from Abdullah et  al. 
[10]. Spore suspension at 3000 spores/mL was spayed 
over plants using a Preval CO2 pressurized sprayer [11, 
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12]. Sterile water was sprayed over control plants using 
the same method. A 10 μg/mL solution of Ptr ToxA was 
obtained from Dr. Timothy Friesen (USDA-ARS, North 
Dakota State University). A needleless syringe was used 
to inject this solution into leaf tissue [13], with sterile 
water injected as a control. This resulted in four differ-
ent treatments for both Glenlea and Salamouni plants: 
(1) spray-inoculation with a suspension of Ptr spores (2) 
spray inoculation with water (3) needleless syringe injec-
tion with Ptr ToxA, and (4) needleless syringe injection 
with water. After treatments, plants were transferred to 
a humidity chamber and leaf sample were collected at 0, 
8, and 16 h and flash-frozen in liquid nitrogen. Samples 
were transferred to a − 80 °C freezer.

Extraction, sequencing, and analysis
RNA was extracted using the Ambion Purelink RNA 
extraction kit with Trizol reagent and treated with 
DNase. Samples were checked for the presence of 28S 
and 18S ribosomal subunits using gel electrophoresis and 
then sequenced at Iowa State University using Illumina 
HiSEQ 3000 (100 base pairs, single reads). As shown  in 
Table 1, the resulting 48 RNA datasets are reported (Data 
Set 1) [14]. Figure S1 shows a flow chart that summarizes 
methods carried out during the experiment [15]. Data file 
2 contains a spreadsheet with descriptions of the 48 RNA 
sequence datasets [15]. Read quality was assessed using 
the program FASTQC [16] and then trimmed using the 
program Btrim [17]. Mapping and assembly were carried 
out using the programs Hisat [18] and Htseq [19], respec-
tively, aligning reads to the Ptr and wheat genomes (Data 
files 3 and 4, respectively) [15].

Limitations
We randomly selected two biological replicates from the 
six initially sampled of each treatment and time point in 
order to reduce the cost of sequencing. This limits how 
confidently we can label particular genes as differentially 
expressed and not the result of random variation.
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