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Abstract 

Objectives:  Crop production is an important variable in social, economic and environmental analyses. There is an 
abundance of crop data available for the United States, but we lack a typology of county-level crop production that 
accounts for production similarities in counties across the country. We fill this gap with a county-level classification of 
crop production with ten mutually exclusive categories across the contiguous United States.

Data description:  To create the typology we ran a cluster analysis on acreage data for 21 key crops from the United 
States Department of Agriculture’s 2012 Agricultural Census. Prior to clustering, we estimated undisclosed county 
acreage values, controlled for acreage in other crop types, and removed counties with low agricultural production to 
produce proportional scores for each crop type in each county. We used proportional scores to control for the influ-
ence of county size in the cluster analysis and used internal and stability measures to validate the analysis. The final 
dataset features 2922 counties. Future research can leverage this typology as an input for county- or regional-level 
analysis.
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Objective
Agricultural production is an important variable for 
many different types of analyses, including, for example, 
regional economic models, environmental assessments of 
water quality or greenhouse gas emissions, and analyses 
of social trends. While ample data are available to exam-
ine various aspects of agricultural production across the 
US, we lack a typology of recent agricultural production 
across the country. We present a dataset with an agricul-
tural production typology for counties across the con-
tiguous US, derived from a cluster analysis of the 2012 
county-level crop data [1].

The US Department of Agriculture (USDA) Economic 
Research Service’s (ERS) Farm Resource Regions, defined 
in the early 2000s, are examples of agricultural regions 
partially based on county-level agricultural production 
[2]. The USDA uses the Farm Resource Regions to exam-
ine regional trends and determine program and funding 

priorities [3]. The ERS Farm Resource Regions were 
informed by a cluster analysis of county-level farming 
characteristics in the early 1990s [4]. Cropping patterns 
have shifted since 1991 due to economic trends, agricul-
tural policy and climate change [5–8]. Using USDA crop 
data from the 2012 Agricultural Census, we provide a 
more up-to-date crop production typology.

The motivation for this dataset came from a need for 
a single categorical, county-level variable that incorpo-
rates the diversity of crop types grown throughout the 
US, where previous efforts were largely geographically 
focused. Additionally, we sought to capture similarities in 
agricultural production, including diversity of production 
and relative quantity of production, between counties. 
We anticipate that this dataset will be of use in analyses 
that seek to understand county-level patterns that may 
relate to crop production types, as we intend to do in a 
forthcoming publication focused on nitrogen dynamics.
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Data description
Our dataset identifies 10 mutually exclusive, agricultural 
crop production categories for the contiguous US based 
on crop production values in the 2012 USDA Agricul-
tural Census Data [9]. Each crop production category is 
defined by the crops that emerged from the USDA crop 
data to drive membership in each county-level crop pro-
duction cluster. These ten categories are: (1) corn silage 
and other crops, (2) tobacco, (3) hay, (4) barley, beans and 
sugar beets, (5) alfalfa and barley, (6) sorghum, sunflower 
and wheat, (7) oranges and sugarcane, (8) rice, (9) corn 
grain and soybeans, and (10) cotton and peanuts.

County-level crop acreage data was obtained from the 
USDA NASS Quick Stats Database from the US Agricul-
tural Census of 2012 [9]. We downloaded county level 
crop acreage data for the 21 crops that, according to 
International Plant Nutrition Institute (IPNI), account for 
an average of 95% of harvested cropland acres reported 
in the agricultural census across the contiguous US [10]. 
The 21 crops are: apples, barley, canola, beans, corn 
grain, corn silage, cotton, alfalfa, oranges, peanuts, pota-
toes, rice, sorghum, soybeans, sugar beets, sugarcane, 
sunflower, sweet corn, tobacco, wheat and other hay 
(i.e. all hay acreage excluding alfalfa). Additionally, we 
downloaded the total county acreage and created a “22nd 
crop” which represents acreage of all other crops grown 
in the county that are unaccounted for in the 21 crops. 
The 22nd crop category captures acreage in the 55 crops 
included in the agricultural census that are less preva-
lent (i.e. combined represent only 5% of harvested crop-
land in the US), for example, cucumber, oats and cherries 
[9]. The initial data download from Quick Stats included 
3060 counties, out of the total 3108 county equivalents in 
the contiguous US. The data cleaning process resulted in 
a final dataset of 2922 counties or 94% of the counties in 
the contiguous US.

USDA Agricultural Census data contains withheld data 
in the form of “(D)” and “(Z)” values in the dataset to 
avoid disclosing data for individual farms and to repre-
sent small figures, respectively [11]. To clean the dataset 

we changed all (Z) values to zero, as (Z) values represent 
a value of less than half an acre [11]. Then we followed 
the IPNI methodology [10] to estimate missing values 
for all (D)s in the dataset. We describe these methods in 
detail in the methods and technical validation document 
(see Table 1). We then created the 22nd crop variable by 
summing acreage for all 21 crops and subtracting this 
from the reported county total harvested cropland. To 
control for differences in county size, we transformed the 
absolute acreage values to proportional scores.

We then performed a k-means cluster analysis [12] on 
the 22 county-level crop acreage proportional scores. 
We determined the optimal number of clusters, or crop 
production categories, to be 10. We analyzed the cluster 
scree plot, as well as ran internal and stability measures 
using the clValid R package [13]. We describe in detail the 
technical validation of our cluster analysis in the methods 
document (see Table 1).

Limitations
We acknowledge that while we have justified and vali-
dated our selection of a 10-cluster solution, the selec-
tion of a different number of clusters would change the 
dataset.
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Table 1  Overview of data files/data sets

Label Name of data file/data set File types (file extension) Data repository and identifier (DOI or accession 
number)

Data file 1 1_Crop_cluster_data_wrangling_forReposi-
tory_071919

R script (.R) Figshare: https​://doi.org/10.6084/m9.figsh​are.81328​
67.v2

Data file 2 2_Cluster_Analysis_22crops_forRepository R script (.R) Figshare: https​://doi.org/10.6084/m9.figsh​are.81328​
67.v2

Data file 3 Methods_and_Technical_Validation_US_county_agri-
cultural_clusters_figshare

Word file (.docx) Figshare: https​://doi.org/10.6084/m9.figsh​are.81328​
67.v2

Data set 1 crop_production_typology_data_and_meta-
data_052819

Excel file (.xlsx) Figshare: https​://doi.org/10.6084/m9.figsh​are.81328​
67.v2

https://doi.org/10.6084/m9.figshare.8132867.v2
https://doi.org/10.6084/m9.figshare.8132867.v2
https://doi.org/10.6084/m9.figshare.8132867.v2
https://doi.org/10.6084/m9.figshare.8132867.v2
https://doi.org/10.6084/m9.figshare.8132867.v2
https://doi.org/10.6084/m9.figshare.8132867.v2
https://doi.org/10.6084/m9.figshare.8132867.v2
https://doi.org/10.6084/m9.figshare.8132867.v2


Page 3 of 3Hammond Wagner et al. BMC Res Notes          (2019) 12:552 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

Funding
This work was supported by a Catalyst Award from the Gund Institute for 
Environment at the University of Vermont awarded to Meredith T. Niles and 
Eric D. Roy. The funding body played no role in the design of the study, the 
collection, analysis, and interpretation of data, or in writing the manuscript.

Availability of data materials
The datasets generated during the current study are publicly accessible in the 
Figshare repository [1]: https​://doi.org/10.6084/m9.figsh​are.81328​67.v2.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Rubenstein School for Environment and Natural Resources, University of Ver-
mont, Burlington, Vermont, USA. 2 Gund Institute for Environment, University 
of Vermont, Burlington, Vermont, USA. 3 Department of Food and Nutrition 
Sciences & Food Systems Program, University of Vermont, Burlington, Vermont, 
USA. 

Received: 24 July 2019   Accepted: 22 August 2019

References
	1.	 Hammond Wagner CR, Niles MT, Roy ED. US county-level agricultural crop 

production typology. Figshare; 2019. https​://doi.org/10.6084/m9.figsh​
are.81328​67.v2.

	2.	 USDA ERS. Farm resource regions. United States Department of Agricul-
ture; 2000 Sep. Report No.: Number 760.

	3.	 Wade T, Claassen RL, Wallander S. Conservation-practice adoption rates 
vary widely by crop and region. United States Department of Agriculture, 
Economic Research Service; 2015. https​://www.ers.usda.gov/webdo​cs/
publi​catio​ns/44027​/56332​_eib14​7.pdf?v=42403​.

	4.	 Sommer JE, Hines FK. Diversity in U.S. agriculture: a new delineation by 
farming characteristics. Agricultural economic report (USA). 1991. http://
agris​.fao.org/agris​-searc​h/searc​h.do?recor​dID=US915​3983. Accessed 
date 5 Dec 2018.

	5.	 Aguilar J, Gramig GG, Hendrickson JR, Archer DW, Forcella F, Liebig MA. 
Crop species diversity changes in the United States: 1978–2012. PLoS 
ONE. 2015;10(8):e0136580.

	6.	 Iizumi T, Ramankutty N. How do weather and climate influence cropping 
area and intensity? Glob Food Sec. 2015;1(4):46–50.

	7.	 Plourde JD, Pijanowski BC, Pekin BK. Evidence for increased mono-
culture cropping in the Central United States. Agr Ecosyst Environ. 
2013;15(165):50–9.

	8.	 Westcott PC. Ethanol expansion in the United States: How will the 
agricultural sector adjust? Economic Research Service: United States 
Department of Agriculture; 2007. Report No.: FDS-07D-01.

	9.	 USDA-NASS. Quick Stats. Washington, DC: National Agricultural Statistics 
Service, U.S. Department of Agriculture; 2019. https​://quick​stats​.nass.
usda.gov/.

	10.	 IPNI. A nutrient use information system (NuGIS) for the U.S. Norcross; 
2012. http://www.ipni.net/nugis​.

	11.	 USDA-NASS. 2012 Census of Agriculture: United States, Summary and 
State Data. United States Department of Agriculture; 2014. Report No: 
AC-12-A-51.

	12.	 Everitt B, Hothorn T. An introduction to applied multivariate analysis with 
R. Berlin: Springer; 2011.

	13.	 Brock G, Pihur V, Datta S, Datta S. clValid, an R package for cluster valida-
tion. J Stat Softw. 2011;25:1–22.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.6084/m9.figshare.8132867.v2
https://doi.org/10.6084/m9.figshare.8132867.v2
https://doi.org/10.6084/m9.figshare.8132867.v2
https://www.ers.usda.gov/webdocs/publications/44027/56332_eib147.pdf%3fv%3d42403
https://www.ers.usda.gov/webdocs/publications/44027/56332_eib147.pdf%3fv%3d42403
http://agris.fao.org/agris-search/search.do%3frecordID%3dUS9153983
http://agris.fao.org/agris-search/search.do%3frecordID%3dUS9153983
https://quickstats.nass.usda.gov/
https://quickstats.nass.usda.gov/
http://www.ipni.net/nugis

	US county-level agricultural crop production typology
	Abstract 
	Objectives: 
	Data description: 

	Objective
	Data description
	Limitations
	Acknowledgements
	References




