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Abstract 

Objective:  Transient receptor potential ankyrin 1 (TRPA1) is an excitatory ion channel expressed on a subset of sen‑
sory neurons. TRPA1 is activated by a host of noxious stimuli including pollutants, irritants, oxidative stress and inflam‑
mation, and is thought to play an important role in nociception and pain perception. TRPA1 is therefore a therapeutic 
target for diseases with nociceptive sensory signaling components. TRPA1 orthologs have been shown to have dif‑
ferential sensitivity to certain ligands. Cinnamaldehyde has previously been shown to activate sensory neurons via the 
selective gating of TRPA1. Here, we tested the sensitivity of cinnamaldehyde-evoked responses in mouse and guinea 
pig sensory neurons to the pore blocker ruthenium red (RuR).

Results:  Cinnamaldehyde, the canonical TRPA1-selective agonist, caused robust calcium fluxes in trigeminal neurons 
dissociated from both mice and guinea pigs. RuR effectively inhibited cinnamaldehyde-evoked responses in mouse 
neurons at 30 nM, with complete block seen with 3 μM. In contrast, responses in guinea pig neurons were only par‑
tially inhibited by 3 μM RuR. We conclude that RuR has a decreased affinity for guinea pig TRPA1 compared to mouse 
TRPA1. This study provides further evidence of differences in ligand affinity for TRPA1 in animal models relevant for 
drug development.
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Introduction
Transient Receptor Potential Ankyrin 1 (TRPA1) is a 
homo-tetrameric, non-selective cation channel belonging 
to the superfamily of TRP channels. Mammalian TRPA1 
is expressed primarily in a subset (~ 20–50%) of nocicep-
tive sensory nerves, with cell bodies in dorsal root gan-
glia (DRG), trigeminal ganglia, and vagal ganglia [1, 2]. 
TRPA1 is activated by a range of electrophilic chemical 
irritants and products of oxidative stress, and plays an 

important role in initiating or sensitizing noxious sen-
sations and nocifensive reflexes in the skin and visceral 
organs such as the airways [3–7]. As such, TRPA1 has 
been proposed as a target for therapeutic intervention in 
the treatment of pain and respiratory disorders.

TRPA1 have been studied using recombinant channels 
and various animal models. With respect to respiratory 
physiology, activation of TRPA1 by irritants, oxidative 
stress and pollutants causes cough, apnea, reflex bron-
chospasm and reflex modulation of heart rate [6, 8–14]. 
Furthermore, knockout of TRPA1 has been shown to be 
protective in allergen-associated airway hyperreactiv-
ity [15]. The guinea pig (Cavia porcellus) is of particular 
interest for developing therapeutic targets for respiratory 
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diseases as airway smooth muscle physiology, acute 
responses to allergen exposure, and ability to cough in 
response to inhaled irritant aerosols are more representa-
tive of human airways than those of rats or mice [16, 17]. 
However, despite the many studies examining TRPA1 
function in guinea pig tissues, the characterization of the 
channel itself remains incomplete. This is an important 
deficit to address given the marked differences in amino 
acid sequence and functional disparities between rodent 
and human TRPA1 [18, 19].

One of the most commonly used pharmacological 
tools in the study of cation channels is the non-specific 
blocker Ruthenium Red (RuR). This water soluble, inor-
ganic cationic dye was shown by Moore in 1971 [20] to 
inhibit transmembrane calcium fluxes, and has since 
been demonstrated as an effective blocker of calcium 
channels and, in particular, TRP channels [1, 21–23]. RuR 
has been shown to block the outer pore of different TRP 
channels and is thought to bind to specific aspartic acid 
residues [24, 25]. In the case of heterologously-expressed 
TRPA1, RuR has been shown to block both mamma-
lian and non-mammalian orthologs of the channel [3–5, 
26–28] and, in accordance with other TRP channels, this 
block is greatly diminished in human TRPA1 if the D915 
residue is mutated [29]. There has been a report that 
heterologously-expressed guinea pig TRPA1 is less sensi-
tive to RuR block compared to heterologously-expressed 
mouse TRPA1 [30]. Here we have investigated the effect 
of RuR on the activation of trigeminal neurons from mice 
and guinea pigs by the electrophilic TRPA1 agonist cin-
namaldehyde. Previous studies have shown that cinna-
maldehyde-evoked sensory nerve responses in rodents 
are largely eliminated by TRPA1 knockout or selective 
TRPA1 inhibitors [9, 31–34]. We found marked differ-
ences in RuR’s inhibition of cinnamaldehyde-evoked 
responses, with effective block of mouse responses at 
30 nM but only partial block of guinea pig responses at 
3 μM. We conclude that guinea pig TRPA1 is less sensi-
tive to RuR block compared to mouse TRPA1.

Main text
Methods and results
To study the differences between the sensitivity of guinea 
pig TRPA1 and mouse TRPA1 to RuR we compared its 
effect on the Ca2+ responses of sensory neurons dissoci-
ated from mouse and guinea pig trigeminal ganglia to the 
TRPA1 selective agonist cinnamaldehyde [3, 34]. We have 
previously shown that TRPA1 agonists increase [Ca2+]i 
by inducing Ca2+ influx [35, 36]. Male C57BL/6 mice 
(6  weeks old, 6 animals, purchased from Envigo) and 
male Hartley guinea pigs (6  weeks old, 3 animals, pur-
chased from Charles River) were killed by CO2 asphyxi-
ation followed by exsanguination. Trigeminal ganglia 

were immediately isolated and enzymatically dissociated 
using previously described methods [5]. Isolated neurons 
were plated onto poly-D-lysine and laminin-coated cov-
erslips, incubated at 37  °C in L-15 (supplemented with 
10% fetal bovine serum) and used within 24 h. Neurons 
were studied for changes in [Ca2+]i with Fura-2AM, as 
before [36]. Neuron-covered coverslips were incubated 
(37 °C) with Fura-2AM (4 μM, for 30 min) in L-15 media 
containing 10% fetal bovine serum. For imaging, the cov-
erslip was placed in a custom-built heated chamber and 
superfused HEPES-buffered bath solution (composi-
tion (mM)): 154 NaCl, 4.7 KCl, 1.2 MgCl2, 2.5 CaCl2, 10 
HEPES, 5.6 dextrose adjusted to pH 7.4 with NaOH) for 
10 min before and throughout each experiment. Changes 
in [Ca2+]i were monitored by sequential dual excitation, 
340 and 380 nm (emission 510 nm)(CoolSnap HQ2; Pho-
tometrics, Surrey, BC, Canada) and analyzed by Nikon 
Elements (Nikon, Melville, NY, USA). Neurons were 
exposed to cinnamaldehyde (50  μM) at t = 4 to 6  min, 
then, following a washout of 7 min, to a second cinnamal-
dehyde treatment (100  μM) at t = 13–15  min. Neurons 
were treated with various concentrations of ruthenium 
red (0, 30, 300, 3000  nM) preceding, during and after 
the first cinnamaldehyde treatment at t = 1–8  min. At 
the end of the studies, all neurons were exposed to KCl 
(75 mM, 60 s) to confirm voltage sensitivity and ionomy-
cin (5 μM, 60 s) to obtain a maximal response. All agents 
were purchased from Sigma-Aldrich.

As before [37], we determined [Ca2+]i by measuring 
the 340/380 ratio and relating all measurements to the 
peak positive response in each cell. Thus we have cho-
sen to normalize ratiometric responses at each timepoint 
in each cell to its maximum [Ca2+]i (evoked by the Ca2+ 
ionophore ionomycin) – data was presented as the per-
centage change in 340/380 ratio (R): response at time 
(x) = 100 X (Rx-Rbl)/(Rmax-Rbl), where Rx was the 340/380 
ratio of the cell at a given time point, Rbl was the cell’s 
mean baseline 340/380 ratio measured over 60  s, and 
Rmax was the cell’s peak 340/380 ratio. Only cells that 
had low [Ca2+]i at baseline (R < 1.0) and yielded a robust 
response to the positive control were included in analy-
ses. Neurons were defined as TRPA1-expressing if a 
positive response was noted for either cinnamaldehyde 
treatments. Only cinnamaldehyde-sensitive neurons 
were included in the analyses. Ratiometric responses 
were found to pass the D’Agostino & Pearson test for 
normality (p > 0.05). The concentration response graph 
represents unpaired observations, which were compared 
using a 2-way ANOVA with Dunnett’s multiple compari-
sons using GraphPad Prism version 8. A p value less than 
0.05 was taken as statistically significant.

Cinnamaldehyde (50  μM and 100  μM) caused an 
increase in [Ca2+]i in a subset of trigeminal neurons from 
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both mouse (152 out of 560 neurons, 27%) and guinea pig 
(266 out of 571 neurons, 47%) (Fig. 1a, b). RuR inhibited 
the calcium responses evoked by 50  μM cinnamalde-
hyde in mouse trigeminal neurons at 30 nM, with com-
plete block seen with 3 μM (Fig. 1a). In contrast, 50 μM 
cinnamaldehyde evoked robust calcium responses in 
guinea pig trigeminal neurons even in the presence of 
300 nM RuR, and responses were only partially inhibited 
by 3  μM RuR (Fig.  1b). Inhibition of cinnamaldehyde-
evoked responses by RuR was reversible in both mouse 
and guinea pig neurons (Fig. 1a, b). Consistent with pre-
vious studies [24, 38] RuR’s block washed out rapidly, in 
some neurons exposing latent cinnamaldehyde-evoked 
responses. Plotting the concentration–response relation-
ship of RuR’s inhibition of cinnamaldehyde-evoked cal-
cium responses showed that the TRPA1 blocking ability 
of RuR was greater in mouse neurons compared to guinea 
pig neurons (2-way ANOVA, p = 0.0002 for species com-
parison (F statistic (1, 410) = 14.3), p < 0.0001 for the 
effect of RuR concentration (F statistic (3, 410) = 22.14)), 
with RuR’s concentration–response relationship right 
shifted in guinea pig neurons (Fig. 1c). These data clearly 
demonstrate an inter-species difference in the sensitivity 
of cinnamaldehyde-evoked responses to this extensively 
used blocker.

Discussion
Previous studies have shown that guinea pig and 
mouse nociceptive sensory nerves and nocifensive 
reflexes are activated by known TRPA1 agonists such 

as cinnamaldehyde and other unsaturated aldehydes 
and allyl isothiocyanate [3, 4, 8, 10, 11, 13, 39–41]. As 
expected, cinnamaldehyde here activated a subset of sen-
sory neurons derived from both guinea pig and mouse 
trigeminal ganglia. However, the sensitivity of these 
cinnamaldehyde-evoked responses to RuR was substan-
tially different between the two species: mouse cinna-
maldehyde-evoked responses were robustly inhibited by 
30 nM RuR, whereas guinea pig cinnamaldehyde-evoked 
responses were only partially blocked at 3 μM. Previous 
research has shown that cinnamaldehyde-evoked sen-
sory nerve responses in rodents are largely eliminated 
by TRPA1 knockout or selective TRPA1 inhibitors [9, 
31–34], thus it is likely that the cinnamaldehyde-evoked 
responses shown here are also mediated by TRPA1. Pre-
vious studies have shown that micromolar concentra-
tions of RuR are capable of some degree of inhibition of 
TRPA1-mediated responses in neurons and tissues from 
guinea pigs [10, 34, 42] and mice [3, 5, 38]. Interestingly, 
there has been a report that heterologously-expressed 
guinea pig TRPA1 is less sensitive to RuR block com-
pared to heterologously-expressed mouse TRPA1 [30]. 
But comparison concentration–response relationships of 
RuR’s inhibition of TRPA1-mediated responses in native 
guinea pig and mouse neurons have not previously been 
published. RuR blocks human TRPA1-mediated currents 
with an IC50 of 45 nM [29], which resembles the mouse 
data presented here. RuR is a positively charged pore 
blocker whose actions on human TRPA1 are dependent 
in part on D915 [29]. This residue is also present in both 

Fig. 1  Inhibition of cinnamaldehyde-evoked responses by ruthenium red (RuR) in mouse and guinea pig trigeminal neurons. A and B, mean (± 95% 
confidence intervals) [Ca2+]i responses of mouse (a) and guinea pig (b) trigeminal neurons to cinnamaldehyde (CA, 50 μM cinnamaldehyde) 
in the presence of vehicle, or RuR (30 nM to 3 µM). After RuR washout, 100 µM cinnamaldehyde was applied as a positive control for TRPA1 
expression. C, concentration response relationship for RuR in inhibiting the mean (± 95% confidence intervals) [Ca2+]i responses evoked by 50 μM 
cinnamaldehyde (CA) in mouse (blue squares) and guinea pig (GP, red squares) trigeminal neurons. N = 27, 57, 21 and 47 mouse neurons for vehicle, 
30 nM, 300 nM, or 3000 nM, respectively. RuR. N = 134, 34, 45 and 53 guinea pig neurons for vehicle, 30 nM, 300 nM, or 3000 nM RuR, respectively
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mouse and guinea pig TRPA1, thus it is likely that other 
pore residues are important for the differential sensitivity 
of guinea pig TRPA1 to RuR inhibition [30].

Guinea pigs are important animal models for respira-
tory diseases [16, 17]. Recent studies have highlighted 
the critical role that sensory nerves play in respiratory 
and cardiovascular diseases [43–45]. This study shows 
that TRPA1, which contributes to nociceptive signaling 
by pollutants, irritants, oxidative stress and inflamma-
tion [15, 46], has notable differences in its modulation 
by pharmacological agents in animal models commonly 
used for drug development [18, 19]. As such, caution is 
required in extrapolating ligand potentiates between 
species.

Limitations
This study used cinnamaldehyde as a model selec-
tive agonist for TRPA1. Nevertheless, we acknowledge 
that, despite previous data demonstrating the TRPA1-
selective responses of cinnamaldehyde [9, 31–34], we 
have not definitively demonstrated the specific involve-
ment of TRPA1. This study compared cinnamaldehyde-
evoked changes in [Ca2+]I, which is an indirect measure 
of TRPA1 channel activation. This technique was chosen 
because it is high throughput. More definitive data may 
be derived from direct assessment of TRPA1-mediated 
currents in low throughput whole cell patch clamp stud-
ies. In addition, these studies were performed on native 
neurons whose TRPA1 channel activities may be modu-
lated by the expression of other proteins and pathways. 
Studies of heterologously-expressed cloned TRPA1 
channels may reduce the likelihood of these potential 
confounding effects. Furthermore, mutations of cloned 
channels would add a mechanistic biophysical compo-
nent to these studies. Nevertheless, the data presented 
here provides strong evidence that ruthenium red has a 
lower affinity for guinea pig TRPA1 compared to mouse 
TRPA1.
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