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Abstract 

Objective:  More than half of patients with depression display eating disorders, such as bulimia nervosa and anorexia 
nervosa. Feeding centers are located in the hypothalamus, and hypothalamic adult neurogenesis has an important 
role in feeding and energy balance. Antidepressants, which can regulate adult neurogenesis in the hippocampus, 
olfactory bulb, and neocortex, are used for eating disorders, but it is unclear whether antidepressants change hypo-
thalamic adult neurogenesis. In this study, we used immunohistological analysis to assess effects of the antidepres-
sant fluoxetine (FLX) on hypothalamic adult neurogenesis of adult mice.

Results:  Expressions of the proliferating cell marker, Ki67, and the neural stem cell marker, nestin, were significantly 
decreased in the hypothalamus by FLX. As regard to postmitotic cells, the number of the neural marker, NeuN, posi-
tive cells was significantly upregulated by FLX, but that of the astrocytic marker, S100B, positive cells was significantly 
reduced by FLX. The number of the oligodendrocyte marker, Olig2, positive cells was not changed by FLX. Interest-
ingly, FLX treatment did not affect the total number of newly generated cells in the hypothalamus, comparing that in 
controls. These results suggest that FLX treatment influence hypothalamic adult neurogenesis and shift the balance 
between the numbers of neurons and astrocytes under studied conditions.
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Introduction
Many studies have demonstrated that new neurons are 
generated in limited regions of the adult brain, such as the 
hippocampal dentate gyrus (HDG), subventricular zone 
(SVZ), cerebral cortex, and hypothalamus [1–3]. Neu-
ral stem cells (NSCs), which can produce neuronal pro-
genitor cells (NPCs) and glial progenitor cells, and each 
progenitor cell, which can produce postmitotic neurons 
and glial cells, are found in these regions, and can persist 
neurogenesis under physiological conditions, throughout 
life [4–6]. Although it is still controversial whether suf-
ficient numbers of neurons are produced in these regions 
of adult humans [7–9], adult neurogenesis, NSCs, and 

NPCs are present in primates, including humans [10–12]. 
It is becoming increasingly clear that new neurons in the 
existing neural network may function in adult brains. 
Neurogenesis in the HDG and SVZ is related to the 
memory of events and odor, respectively [13]. New neu-
rons in the cerebral cortex have neuroprotective function 
against brain ischemia [14].

In the past 2  decades, evidence has accumulated that 
neurogenesis can occur in adult mammalian hypothala-
mus. In the third ventricle of the hypothalamus, NSCs 
exist and produce new neurons. Hypothalamic NSCs, 
called tanycytes, are subdivided into four types, such as 
α1, α2, β1, and β2, based on their position, gene expres-
sion pattern, innervation, and neurogenic potential. The 
α2-tanycytes display neurogenic characteristics. The 
functions of the hypothalamus are involved in the regula-
tion of metabolism, reproduction, endocrine, sleep, and 
body temperature, and new neurons in the hypothalamus 
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are expected to be related to those functions. In fact, new 
neurons contain gonadotropin-releasing hormone, thy-
rotropin-releasing hormone, oxytocin, and vasopressin 
[15]. Recent studies have found the role of hypothalamic 
neurogenesis in metabolic regulation and reproductive 
physiology [16]. Levels of hypothalamic neurogenesis 
can be regulated by dietary, environmental and hormo-
nal signals. Since the hypothalamus has a central role in 
controlling a broad range of homeostatic physiological 
processes, these findings may have far ranging behavioral 
and medical implications [17].

The abnormalities of adult neurogenesis in these 
regions have been reported to be involved in neuropsy-
chiatric disorders, such as Alzheimer’s disease and 
depression. There is a significant decrease in HDG neu-
rogenesis in patients with Alzheimer’s disease and some 
animal models [18]. Although there is no direct evidence 
that adult neurogenesis is decreased in patients with 
depression, stress, which is one of the major factors for 
depression, decreases adult neurogenesis in the HDG of 
experimental animals [19]. In addition, NSCs and NPCs 
in the HDG, cerebral cortex, and SVZ, are affected by 
antidepressants. Chronic antidepressant treatment 
increases neurogenesis in the HDG [20] and cerebral cor-
tex [14], and has the opposite effect on neurogenesis in 
the SVZ [21].

Depression is a common mental disorder, affecting 
approximately 300  million people worldwide in 2017 
[22]. More than 50% of patients with depression have 
been reported to show eating disorders [23]. For patients 
with eating disorders, selective serotonin reuptake inhibi-
tors (SSRIs), a group of antidepressants, are used for drug 
treatment [24]. Hypothalamic neurogenesis functions as 
a regulator of eating behaviors and energy balance [25]. 
However, there are almost no data that SSRIs influence 
hypothalamic neurogenesis, although early exposure to 
SSRIs is linked to depression and anxiety-like disorders 
[26]. In this study, we examined whether the SSRI, fluoxe-
tine (FLX), administration affect hypothalamic neurogen-
esis in adult mice, using immunohistological methods.

Main text
Materials and methods
Experimental animals
Eight adult male C57BL/6 J mice (8-week-old; Japan SLC, 
Shizuoka, Japan) were used in this study. Housing condi-
tions were thermostatically maintained at 24 ± 1 °C with 
constant humidity (60%) and lighting (12  h light/dark 
cycle, light on: 7:00–19:00). The animals were housed for 
1 week before the experiments and fed a normal diet and 
water given ad libitum. The experimental procedures for 
animals were executed in accordance with Mukogawa 

Women’s University’s guidelines for the ethical treatment 
of laboratory animal.

FLX and bromodeoxyuridine (BrdU) treatments
FLX and BrdU treatments were performed as described 
previously [1]. Briefly, 8 mice were randomly divided into 
2 groups (4 mice/group); each group of mice was intra-
peritoneally injected with vehicle (phosphate-buffered 
saline, PBS) or 15 mg/kg FLX (LKT Laboratories, St Paul, 
MN) every day for 4  weeks. From previous studies [27, 
28], assuming a FLX-altered cell volatility of 40–50%, 
about 4 animals are required per group. In addition, 
intraperitoneal administration was performed to keep 
the daily FLX dose was constant. At 1  week after the 
onset of FLX treatment, an injection of BrdU (100  mg/
kg; Sigma Aldrich, St. Louis, MO) was administered at 
10 AM once a day for 3 consecutive days. After 4 weeks, 
the mice were deeply anesthetized with 3% isoflurane 
(Wako, Osaka, Japan), killed by bloodletting from the 
right atrium, and perfused with 4% paraformaldehyde 
(Merck, Darmstadt, Germany) in PBS. The brains were 
removed and immersed 4% paraformaldehyde overnight 
at 4  °C. Then, the brains were store in PBS containing 
20% sucrose for cryoprotection until use. Body weights 
of mice were measured every week from the onset of the 
experiment. The rationale regarding the animals used in 
the experiment, administration method, and group size is 
in the Additional file 1.

Immunofluorescent staining
Immunofluorescent staining for brain sections was per-
formed as described previously [14]. Briefly, the brains 
were cut into 50  μm-thick coronal sections using a 
microtome (LS-113; Yamato Kohki Industrial, Saitama, 
Japan). Sections were stored in PBS containing sodium 
azide (0.05%, w/v) at 4  °C until use. Four mice were 
used to stain sections with each cell type marker anti-
body; proliferating cells, neurons, astrocytes, and 
oligodendrocytes.

For BrdU staining, sections were incubated at 4 °C for 
10 min in 0.1 N HCl and then at 37 °C for 30 min in 2 N 
HCl. Sections were washed twice for 5  min in PBS and 
then blocked in 0.2  M glycine in PBS at RT for at least 
2 h. The following procedures were the same as methods 
with other primary antibodies.

Sections were incubated with primary antibodies over-
night at RT. The list of antibodies used in the experiments 
is given in the Additional file 2. After washing in PBS for 
30 min, sections were incubated at RT for 1 h with sec-
ondary antibodies. Sections were then washed in PBS 
for 30  min, mounted on glass slides coated with 3-ami-
nopropyltriethoxysilane, and embedded with PermaFluor 
(Thermo Fisher Scientific, Waltham, MA, USA).
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Images were acquired by using an LSM 510 confo-
cal laser-scanning microscope (Carl Zeiss, Oberkochen, 
Germany) with a pinhole setting that corresponded to a 
focal plane thickness of less than 1 μm to obtain images 
of the stained sections. Quantitative analysis was per-
formed as reported previously [14]. Quantification of 
positive structures was performed in a blinded manner, 
i.e., encoded images were assessed in random order by 
other investigators, although investigators could not be 
blinded to the groups due to breeding in the difference 
cages.

We examined the hypothalamic region, which approxi-
mately corresponds to −  1.46 to −  2.06  mm posterior 
from bregma in the atlas of Franklin and Paxinos [29]. 
Approximately 12 sections from each animal (4 FLX-
treated and 4 control mice) were obtained. The sections 
from each group were divided into 4 groups: for NSCs, 
for neurons, for astrocytes, and for oligodendrocytes, 
each of which comprised 12 sections. Positive signals 
were counted in the whole structures of thalamus.

Data analysis
All data are presented as mean  ±  SD. GraphPad Prism 
(version 6, GraphPad Software, La Jolla, CA) was used to 
analyze all data. For all statistical analyses used, the alpha 
level was set at P  < 0.05. Differences between FLX-treated 
and control groups were compared using unpaired t test. 
There were no criteria used for including and excluding 
experimental units.

Results
Hypothalamic NSCs have been reported to express the 
NSC marker, nestin. Proliferating cells, including NSCs 
and NPCs, express Ki67 protein in their nuclei. First, by 
using these markers, we determined whether NSCs and 
NPCs in the hypothalamus were affected by FLX treat-
ments. The fluorescence intensity of nestin-positive (+) 
structures was significantly reduced by FLX treatments, 
compared with controls (P = 0.0024) (Fig.  1A–C). In 
addition, the number of Ki67+ cells was significantly 
decreased in the hypothalamus of FLX-treated mice, 
compared with controls (P = 0.0007) (Fig.  1D–F). The 
proliferation ability of NSCs and NPCs correlates with 
the level of nestin expression [30]. These results suggest 
that chronic FLX administration down-regulates the den-
sities of NSCs and NPCs.

Next, we determined whether the numbers of newly-
produced neurons, astrocytes, and oligodendrocytes, 
from NSCs were altered by FLX treatments. Contrary to 
expectations based on decreased densities of hypotha-
lamic NSCs and NPCs in FLX-treated mice, we found 
that FLX treatments increased the density of new neu-
rons (P = 0.0457), which had the neuron maker NeuN 

and the cell proliferation marker BrdU, in the hypothala-
mus (Fig. 2A, B). On the other hand, the density of newly-
generated astrocytes, which were the astrocyte marker 
S100B+ and BrdU+ cells, was significantly reduced by 
FLX treatments (P = 1.75 × 10–5), compared with con-
trols (Fig.  2C, D). As for oligodendrocytes, which were 
the oligodendrocyte marker Olig2+ and BrdU+ cells, 
there was little change in the numbers between FLX-
treated and control mice (P = 0.119) (Fig.  2E, F). The 
percentage of each cell type (neurons, astrocytes, and oli-
godendrocytes) in both groups at 4 weeks after vehicle or 
FLX treatment is shown in Fig. 3. The numbers of total 
newly-generated cells were not changed between both 
groups (P = 0.167) (Fig. 3).

Discussion
Chronic treatments with FLX have been reported to 
regulate adult neurogenesis: up-regulation in the hip-
pocampus [20], cortex [14], and hypothalamus [27], and 
down-regulation in the olfactory bulb [21]. These find-
ings suggest that chronic treatments with FLX affect 
the behaviors of NSCs and NPCs in adult brains. In this 
study, the experimental data indicate that treatment 
for 4 weeks with FLX decreased the densities of NSCs 
and NPCs in the hypothalamus. As mechanisms of this 
phenomenon, it would be assumed that the expressions 

Fig. 1  FLX treatment decreased the number of proliferating cells 
in the hypothalamus of adult mice. A, B Representative images of 
the NSC marker, nestin, positive structures in the hypothalamus of 
mice treated with vehicle (upper) or FLX (lower). C The fluorescence 
intensities of nestin-positive structure were quantified in the 
hypothalamus of vehicle-treated and FLX-treated mice (n = 4 mice 
each). D, E Representative images of the dividing cell marker, Ki67, 
positive cells in the hypothalamus of mice treated with vehicle 
(upper) or FLX (lower). F The number of Ki67-positive cells was 
quantified in the hypothalamus of vehicle-treated and FLX-treated 
mice (n = 4 mice each). Scale bar, 100 μm in A and B, 20 μm in D and 
E. 3V third ventricle; ME medial eminence. Values (mean ± SD) are 
analyzed by Student’s t test
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of 5-HT receptor subtypes in NSCs and NPCs might 
be different among them [31–35], and the direction of 
adult neurogenesis might be determined by the expres-
sion levels, balance of receptor subtypes, and the status 
of intracellular signaling cascades.

In this study, I found that the number of total newly-
generated cells was not changed, even though the num-
bers of NSCs and NPCs were decreased by FLX. The 
proliferation ability of NSCs and NPCs correlates with 
the level of nestin expression [30], indicating that the 
numbers of NSCs and NPCs in the hypothalamus are 
decreased by FLX. In addition, FLX increased the num-
ber of new neurons, decreased that of new astrocytes 
and did not change that of oligodendrocytes in the 

hypothalamus. It is conceivable that the increased num-
ber of new cells might be due to the longer survival of 
the cells after division. FLX up-regulates the expression 
of BDNF in the hypothalamus [27, 36]. BDNF can pro-
mote the survival of neurons and oligodendrocytes in 
the spinal cord [37, 38]. As for astrocytes, FLX upregu-
lates BDNF expression in astrocytes [39], but it remains 
unclear whether BDNF can increase the survival of 
astrocytes [40]. Thus, these findings suggest that FLX 
increases the expression of BDNF, which might pro-
mote the survival of new neurons and oligodendro-
cytes in the hypothalamus. As a result, even though the 
numbers of NSCs and NPCs are decreased by FLX, the 
number of total newly-produced cells has not changed. 
Another possibility is that FLX would promote differ-
entiation into neurons. This action might have reduced 
the number of NSCs and NPCs, increased that of neu-
rons, and reduced that of astrocytes. However, the find-
ings are the opposite of the findings of previous in vitro 
evidence [41]. This might reflect the difference between 
in vitro and in vivo experiments. Further analysis of the 
effect of FLX on adult neurogenesis in the thalamus is 
needed, including its relationship to depression and 
eating disorders (a discussion about depression and 
eating disorders can be found in Additional file 1).

Limitations
Although it is relevant to understand how FLX treatment 
administered to naive control mice affects hypothalamic 
adult neurogenesis, it is much more important to under-
stand the effect of fluoxetine treatment in depressive 
models or in animal models of eating disorders. In this 
study, we performed a quantitative analysis of positive 
cells and structures by fluorescent intensity. However, 

Fig. 2  Changes of the numbers of newly-generated cells in the 
hypothalamus of adult mice. A, B Images of the neuron marker, NeuN 
(green) and the proliferating cell marker, BrdU (red), double-positive 
cells. The quantification of the number of NeuN/BrdU-positive 
cells is shown. C, D Images of the astrocyte marker, S100β (green) 
and BrdU (red) double-positive cells. The quantification of the 
number of S100β/BrdU-positive cells is shown. (E, F) Images of the 
oligodendrocyte marker, Olig2 (green) and BrdU (red) double-positive 
cells. The quantification of the number of Olig2/BrdU-positive cells 
is shown (n = 4 mice each). Arrowheads indicate the same cells. 
Scale bar, 50 μm in A, C, and E. Values (mean ± SD) are analyzed by 
Student’s t test

Fig. 3  Comparison of total number of newly-generated cells in 
FLX-treated and control mice. The numbers of new neurons and 
astrocytes were changed by FLX, but that of oligodendrocytes 
was not changed. These numbers of neurons, astrocytes, and 
oligodendrocytes were the same as in Fig. 2. The total number of 
newly-generated cells was almost unchanged, compared with 
both groups (n = 4 mice each). Values (mean ± SD) are analyzed by 
Student’s t test
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since the fluorescence intensity varies slightly between 
experiments, we made efforts to reduce the variation 
by experimenting with one sample three times. We also 
claim from indirect data that new cell numbers have 
not changed despite FLX treatment. In the future, it will 
be necessary to perform double staining of BrdU and 
nuclear staining to directly count new cell numbers.
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