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Abstract 

Objective:  Musculoskeletal modeling and simulation are powerful research and education tools in engineering, 
neuroscience, and rehabilitation. Interactive musculoskeletal models (IMMs) can be controlled by muscle activity 
recorded with electromyography (EMG). IMMs are typically coded using textual programming languages that present 
barriers to understanding for non-experts. The goal of this project was to use a visual programming language (Sim-
ulink) to create and test an IMM that is accessible to non-specialists for research and educational purposes.

Results:  The developed IMM allows users to practice a goal-directed task with different control modes (keyboard, 
mouse, and EMG) and actuator types (muscle model, force generator, and torque generator). Example data were 
collected using both keyboard and EMG control. One male participant in his early 40’s performed a goal-directed task 
for four sequential trials using each control mode. For EMG control, the participant used a low-cost EMG system with 
consumer-grade EMG sensors and an Arduino microprocessor. The participant successfully performed the task with 
both control modes, but the inability to grade muscle model excitation and co-activate antagonist muscles limited 
performance with keyboard control. The IMM developed for this project serves as a foundation that can be further 
tailored to specific research and education needs.
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Visual programming, Simulink
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Introduction
Musculoskeletal modeling and simulation are commonly 
used as research tools for estimating quantities such as 
individual muscle forces or bone-on-bone contact forces 
[1, 2]. A specialty area of modeling employs interactive 
musculoskeletal models (IMMs), in which a user inter-
acts with the model in a closed-loop fashion (also known 
as human-in-the-loop models), and the model can be 
controlled with neural activity recorded from the surface 
of muscles via electromyography (EMG). In addition to 
testing sensorimotor control hypotheses [3–6], IMMs 
have been used in the control of prosthetics [7, 8] and 

exoskeletons [9, 10]. IMMs may also be helpful in educa-
tion, such as enhancing a student’s understanding of how 
the nervous system coordinates a redundant musculo-
skeletal system.

Many IMMs are written using textual programming 
languages such as C++ [11–13], which non-experts may 
find opaque. Visual programming languages (VPL) are an 
alternative that uses blocks to represent code functions 
and arrows to represent function inputs and outputs. 
This allows the visual structure of the program to mimic 
a conceptual flowchart, thereby facilitating understand-
ing of program function by non-experts. However, there 
are few existing examples of VPL-based musculoskeletal 
models, and most implementations are not IMMs.

An early VPL-based musculoskeletal model used Sim-
ulink (MathWorks, Natick, MA) to create virtual muscles 
that could be used to simulate human movements [14]. 
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Others have used Simulink-based musculoskeletal mod-
els to simulate gait [15–18] and arm movements [17, 
18]. Although Simulink has been used for online control 
applications with hard or soft exosuits, it is mainly used 
to control the low-level robotic hardware [19, 20], with 
the musculoskeletal model implemented in a textual lan-
guage such as C++ [19]. Thus, there is a need to develop 
a VPL-based IMM that allows human-in-the-loop con-
trol, which can be used by non-specialists for research 
and educational purposes.

The goal of this project was to create a VPL-based user-
friendly IMM, which can serve as research and education 
tools in a variety of domains. For example, a neurosci-
entist may use the IMM to understand how the nervous 
system adapts to changes in the mechanical properties 
of a prosthetic arm, or a physical therapist may use the 
IMM to study how different neuromuscular impairments 
affect movement control.

Main text
Methods
Overview
The VPL Simulink (R2021a) was used to program an 
IMM of a human arm for use in education and research. 
The specific IMM design criteria included: (1) human-in-
the-loop control with either a keyboard, mouse, or EMG, 
(2) different modes of actuation (muscle model, force 
generator, or torque generator), (3) capability to perform 
a goal-directed task, and (4) ability to save relevant vari-
ables for further analysis. Only those model components 
essential for simulating human motion were included. 
The rationale was to minimize the number of model 
parameters and make it simpler for users to understand 

the effects of parameter changes on the behavior of the 
arm.

Details
The musculoskeletal model is of the same form as pre-
viously used by our group [21, 22]. The Simulink model 
contains several discrete components, including actua-
tor models, rigid body dynamics and musculoskeletal 
geometry, and integrators (Fig.  1). These components 
were embedded in a loop that allows multiple trials to 
be performed for motor adaptation and learning experi-
ments (this higher-level loop is not shown in Fig. 1). Sim-
ulink dashboard elements make a simple user-interface 
with radio buttons (Fig. 2A) for selection of control (key-
board/mouse/EMG) and actuation (torque/force/mus-
cle) modes. The musculoskeletal model is planar with a 
fixed upper arm and mobile lower arm, both modeled as 
rigid links, connected by a hinge joint (Fig. 2B). A custom 
visual display shows the virtual arm, task features, and 
control buttons for mouse control (Fig.  2C). A Level-2 
MATLAB S-Function generates the display and collects 
user control inputs. This is the only custom S-Function; 
all other operations are performed with native Simulink 
blocks. Although more sophisticated models could be 
created with products like Simscape Multibody (Math-
works), this was avoided to maximize accessibility, so 
users only need a single software package (MATLAB/
Simulink). A Runge–Kutta solver was used with a fixed-
step size of 1/150 s. This represented a tradeoff between 
simulation speed and integration accuracy on a Windows 
10 laptop with an Intel Core i7-7700HQ CPU @ 2.8 GHz 
with 32 GB of RAM (for higher accuracy or patient-criti-
cal applications, a real-time operating system and smaller 
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Fig. 1  Simulink model diagram showing main program components for the interactive musculoskeletal model
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step size would be preferred for the mathematically stiff 
IMM).

Actuation modes
The model allows three different modes of actuation. 
In the torque generator mode, the control signals are 
mapped directly into elbow flexor and extensor torques. 
In the force generator mode, control signals are mapped 
into actuator forces and multiplied by muscle moment 
arms to create joint torques. In the muscle model mode, 
muscle mechanics are included using classic Hill-type 
two-element muscle models, with each comprised of a 
contractile element in series with an elastic element. The 
force produced by the contractile element depends on its 
activation, length, and velocity. The elastic component 
has a nonlinear stiffness; it’s compliant at low forces and 
stiffens at higher forces (muscle model details are in Has-
son [21]). As for the force generators, the muscle model 
forces are multiplied by moment arms to produce flexor 
and extensor muscular torques on the elbow joint. The 
user can change any of the actuator properties through a 
Simulink dashboard interface.

Control modes
Users can control the model with their own muscles 
using an EMG system (a low-cost system is used here; see 
“Experimental Protocol” section for details). EMG meas-
ured from the user’s elbow flexors and extensors serves as 
excitation signals to the corresponding flexor and exten-
sor muscle models. EMG control is proportional, i.e., 

users can vary the magnitude, timing, and duration of the 
actuator control signals. Alternative control modes allow 
users to either click on buttons or use keystrokes with 
the keyboard (left/right arrows). These modes only allow 
“bang-bang” control, i.e., the excitation level is fixed, and 
the user can only vary the timing and duration of the 
control signals.

Actuator geometry
The force generators and muscle models share the same 
geometry. They originate on the proximal end of the 
upper arm segment and insert on the proximal end of 
the lower arm segment (Fig. 2B). This loosely mimics the 
attachments of the elbow flexors (short head of the biceps 
brachii, brachialis, and brachioradialis) and elbow exten-
sors (triceps brachii). For simplicity, the moment arms 
of the actuators were calculated based on the straight-
line geometry. If desired, more realistic values could be 
set based on more complex anatomical models, such as 
those available in OpenSim [23].

Passive components
Two passive torques were added to the active torque 
produced by the actuators. An exponential ligamentous 
torque prevents the arm from moving beyond a physi-
ological range of motion, emulating the action of elbow 
ligaments (and bony endpoints). A damping torque 
makes the experimental task more manageable, which 
requires stopping the arm on a spatial target (otherwise, 
the frictionless environment makes stopping difficult).

A

B

C

Fig. 2  A Available options for model actuation and user control type (EMG = electromyographic control). B Schematic showing geometry and key 
components of the virtual arm. C Graphical user interface
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Motor task
The Simulink model allows users to practice a goal-
directed task with the IMM. The task is to move the 
virtual arm from a starting position at 90° (Fig. 2C) to a 
target position 45° away (counterclockwise/elbow flex-
ion) as fast as possible, with a movement time limit of 5 s. 
Users can perform any number of trials. A trial is consid-
ered successful when kinematic criteria are satisfied (arm 
angle within ± 2° of target and arm angular velocity below 
0.001°/s). When the trial ends (successfully or timed out), 
the arm automatically resets back to the starting position, 
and the user begins another trial.

Experimental protocol
To illustrate the performance of the IMM, example data 
were collected using both keyboard and EMG control 
with the muscle models. One male participant in his 
early 40’s performed the task for four sequential tri-
als using each control mode. To maximize accessibility, 
a low-cost EMG system was used with consumer-grade 
EMG sensors (MyoWare, Advancer Technologies, LLC). 
The sensors integrated bipolar snap-electrode recepta-
cles spaced 3  cm apart with a third separate reference 
snap-electrode receptacle with a 6  cm wire lead (round 
pre-gelled disposable snap electrodes were used; Kendall 
ECG Electrodes, Covidien, Dublin, Ireland). The partici-
pant’s skin was prepared by rubbing with an abrasive gel 
and cleaning with alcohol. One EMG sensor was placed 
on the center of the biceps muscle belly and the other 
on the center of the triceps muscle belly (lateral head); 
both sensors were oriented parallel to the muscle fibers. 
After placement, the electrodes were covered with elas-
tic pre-wrap (Muller Sports Medicine, Prairie Du Sac, 
Wisconsin). The EMG sensors included onboard elec-
tronics that amplified the measured differential voltage, 
applied a high-pass filter (to remove the offset), full-wave 
rectified the signal, and then produced a linear envelope 
with an integration amplifier. The analog linear enve-
lopes from the biceps and triceps were digitized by a 
10-bit Arduino microprocessor, which had an onboard 
FTDI FT232RL USB-to-TTL serial communication chip 
(Nano v3.3, Arduino SA, Lugano, Switzerland). The digi-
tized EMG signals were acquired through a USB con-
nection (the FTDI drivers provided a virtual COM port) 
using the MATLAB serialport.m function in the Level-2 
S-Function that provided the graphical user interface. To 
enhance safety, a USB isolator (Adafruit Industries) was 
placed between the Arduino and PC USB port.

Discussion
The VPL-based IMM allows users to control a virtual 
arm using different control and actuation modes. An 
example contrasting keyboard and EMG control using 

muscle model actuation is shown in Fig.  3. The disad-
vantages of keyboard control are evident as the par-
ticipant only had control over the timing and duration 
of the muscle excitation. On the other hand, myoelec-
tric control allows excitation amplitude to be graded 
and affords the ability to co-activate flexor and exten-
sor muscle models, which may help in stabilizing the 
arm near the target. While this example shows some 
of the variables that can be viewed and analyzed by 
program users, other variables can also be plotted, 
including those related to the internal workings of the 
muscle models, such as the contractile and elastic ele-
ment lengths and velocities and muscle moment arms. 
Using Simulink, these variables populate the MATLAB 
workspace, and a simple MATLAB script can perform 
post-processing of the data (as was done in this case). 
Simulink scope blocks can also be inserted directly into 
the Simulink model to view signals during program 
execution.

The IMM can serve as both an education and research 
tool for a wide audience. For example, it could serve as 
an introduction to musculoskeletal modeling and myoe-
lectric control for an engineering student. The block dia-
gram would facilitate understanding of model function. 
Components could be altered to simulate a myoelectric 
prosthesis. Alternatively, a neuroscientist might be inter-
ested in understanding how the nervous system adapts to 
changes in musculoskeletal dynamics, such as a change 
in musculoskeletal geometry. On the other hand, a physi-
cal therapist could operate the model for exposure to the 
internal and dynamical complexities that impact move-
ment production with some basic instruction. Various 
disorders could be simulated. For example, the therapist 
could experience how a reduction in strength impacts 
goal-directed actions. The interactive, user-modifiable, 
myoelectrically-driven, upper-limb musculoskeletal 
model developed by this project serves as a foundation 
that can be further tailored to specific research and 
education needs. We made the IMM available with a 
permissive open-source software license to maximize 
accessibility (see link in “Availability of data and materi-
als” sections).

Limitations
The program was designed to run in the basic Simulink 
programming environment (without add-ons such as 
Simscape Multibody) on a standard Windows PC or lap-
top. This increases ease of access to the source code so 
that users can change the block diagram and interactively 
experience the effects. However, running the program 
in this way on a non-real-time operating system limits 
execution speed, which could be increased by using a 
real-time operating system or deploying the program on 
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Fig. 3  Example data from one participant that performed a goal-directed task with an interactive musculoskeletal model of an arm using keyboard 
and myoelectric control. Four sequential trials are shown. The goal was to move the arm model from a starting position to a target (horizontal 
dashed line in the arm angle plots) as quickly as possible
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a dedicated microprocessor. For accessibility, a low-cost 
EMG system was used, and the musculoskeletal model 
has a relatively simple architecture: a planar model with 
lumped flexor and extensor muscle models with straight-
line geometry. For some research applications, a more 
detailed model architecture and higher-grade EMG sys-
tem may be desired.
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