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Comparison of decomposition algorithms 
for identification of single motor units 
in ultrafast ultrasound image sequences of low 
force voluntary skeletal muscle contractions
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Abstract 

Objective:  In this study, the aim was to compare the performance of four spatiotemporal decomposition algorithms 
(stICA, stJADE, stSOBI, and sPCA) and parameters for identifying single motor units in human skeletal muscle under 
voluntary isometric contractions in ultrafast ultrasound image sequences as an extension of a previous study. The 
performance was quantified using two measures: (1) the similarity of components’ temporal characteristics against 
gold standard needle electromyography recordings and (2) the agreement of detected sets of components between 
the different algorithms.

Results:  We found that out of these four algorithms, no algorithm significantly improved the motor unit identifica-
tion success compared to stICA using spatial information, which was the best together with stSOBI using either spatial 
or temporal information. Moreover, there was a strong agreement of detected sets of components between the 
different algorithms. However, stJADE (using temporal information) provided with complementary successful detec-
tions. These results suggest that the choice of decomposition algorithm is not critical, but there may be a methodo-
logical improvement potential to detect more motor units.

Keywords:  Ultrafast ultrasound, Concentric needle electromyography, Motor units, Decomposition algorithms, Blind 
source separation
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Introduction
Blind source separation (BSS) separates a set of sources 
(e.g., hidden signals) from a set of mixtures of the sources 
(e.g., observed data) without information about the 
sources and the mixing process [1]. The goal of BSS is to 
jointly estimate the sources and the mixing process by 
only observing the mixture of the sources, which yields 
an ill-posed inverse problem. Many algorithms can solve 

a BSS problem [2–5], and they rely on different tempo-
ral, spatial, or spatiotemporal assumptions (different cost 
functions).

A typical BSS problem is identifying single motor 
units (MUs) from, e.g., multichannel data such as sur-
face electromyography (EMG) [6]. The MU comprises 
a bundle of muscle fibres innervated by a motoneuron. 
Through neural activation, it electrically depolarizes 
the MU fibres (referred to as a firing instant) and gives 
rise to a muscle contraction [7, 8]. Studying the MUs’ 
function is essential in, e.g., diagnosing neuromuscular 
diseases [8], rehabilitation medicine [9], exercise physi-
ology and sports sciences [10]. In previous work, our 
group applied a BSS algorithm called spatiotemporal 
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independent component analysis (stICA) [3] to iden-
tify components in ultrafast ultrasound (UUS) image 
sequences [11, 12]. Using simulations, we showed that 
the method had high performance [11], but we could 
only identify about one-third of the active MUs in a val-
idation study [12]. However, it’s still unknown whether 
this successful identification rate depends on that 
decomposition algorithm’s properties and cost function 
(also referred to as an error function that is pre-defined 
and minimized).

This study aimed to compare the performance of dif-
ferent spatiotemporal decomposition algorithms and 
parameters for identifying single MUs in human skeletal 
muscle under low force voluntary isometric contractions 
in UUS image sequences as an extension of a previous 
study [12]. The performance was quantified using two 
measures: (1) the similarity of components’ temporal 
characteristics against gold standard needle electromyo-
graphy recordings and (2) the agreement of detected sets 
of components between the different algorithms. As a 

performance baseline, we also quantified performance 
without any decomposition.

Main text
Methods
Experimental procedure
We collected 64 synchronized measurements [12], from 
nine healthy subjects (27–45  years old, four men and 
five women), from the cross-section of biceps brachii 
(Fig.  1A). The synchronized measurements were col-
lected using UUS (40 × 40 mm field of view, 2 kHz frame 
rate) and concentric needle-EMG (38 × 0.45 mm, 64 kHz 
sampling rate). The exclusion criteria were subjects with 
neuromuscular disease, blood disease, and subjects using 
blood-thinning drugs. The duration of each measure-
ment was 2 s. Out of the 64 synchronized measurements, 
we extracted 91 firing patterns of single MUs from the 64 
EMG datasets, where some datasets included multiple 
active MUs (Additional file 1: Table S2). A firing pattern 
is a sequence of firing instants. The subjects performed 

Fig. 1  Framework for MU identification in ultrafast ultrasound (UUS) image sequences was composed of four stages. A The first stage; data 
acquisition. Collecting synchronized UUS and concentric needle electromyography (EMG) measurements on the biceps brachii under low force 
voluntary isometric contractions. B The second stage; calculating tissue velocities (based on the UUS radiofrequency signals). C The third stage; 
data decomposition. We inserted each region-of-interest (ROI, 25 in total) into four different decomposition algorithms (see Table 1) to extract 
25 spatiotemporal components. D The fourth and final stage; post-processing. We selected one optimal component out of 625 (25 components 
in each of the 25 ROIs) based on its distance to the needle tip (< 10 mm) and maximal agreement to MU firing rate in terms of RoA. The selected 
components’ features are then compared between the different decomposition algorithms
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low force isometric elbow flexion as a physician inserted 
a needle electrode into the biceps brachii (about 1% of 
maximum voluntary contraction). An additional section 
file describes the data collection in more detail (Addi-
tional file 1: Data collection).

Framework for motor unit identification in ultrasound image 
sequences
Single MUs were identified using the framework 
described in Rohlén et  al. [12], but we replaced the 
decomposition module. See Fig.  1. In short, we used a 
spatial sub-region of 20 × 20 mm as the region-of-inter-
est (ROI) with jumps of 5 mm laterally and axially, result-
ing in 25 partially overlapping sub-regions (Fig. 1C). For 
each ROI, we reduced the data dimension using singular 
value decomposition. A decomposition algorithm is then 
applied to decompose each ROI into 25 spatiotemporal 
components (Fig. 1C), where we estimated the firing pat-
tern for each component [12]. This procedure resulted 
in 25 × 25 = 625 components from each synchronized 
dataset and algorithm. From all these components, we 
selected one component per synchronized measurement 
(excluding components > 10 mm from the needle) based 
on the maximal rate of agreement (RoA) with the firing 
instants of the EMG-measured MU (Fig.  1D). For the 
RoA definition, see below.

Decomposition algorithms
The objective is to recover the latent components 
S from the observed data Y. Here, we focused on the 
instantaneous linear model, Y = AS, where Y = (Y,…,Y) is 
the observed data, S = (S,…,S) is the latent components, 

A is the unobserved mixing matrix, m and n are the 
numbers of pixels and latent components respec-
tively. The objective is to transform the observed data 
Y using a linear transformation W = A+ , which denotes 
the pseudo-inverse of A. Thus, S = WY. In this work, 
observed data Y is the UUS velocity data that has been 
vectorized from 3D (2D over time) to 2D.

We chose four algorithms to be evaluated with dif-
ferent parameters focusing on different spatiotempo-
ral features (see Table 1 for an overview). For details of 
each algorithm, we refer to the corresponding articles. 
The selected decomposition algorithms are: sparse PCA 
(sPCA) [2], spatiotemporal independent component 
analysis (stICA) [3], spatiotemporal joint approxima-
tion diagonalization of eigenmatrices (stJADE) [4], 
and spatiotemporal second-order blind identification 
(stSOBI) [13]. sPCA has a parameter λ related to the 
number of non-zero pixels. In contrast, stICA, stJADE, 
and stSOBI have a weighting α-parameter favouring 
temporal or spatial separation [3].

The most common general BSS algorithms are the 
stICA, stJADE, and stSOBI (or its special cases) and 
have been used in other BSS comparison studies [14–
17]. For example, the Infomax-based approach [18] is 
a common algorithm identical to the maximum likeli-
hood approach used here [19]. stSOBI [13] is a spati-
otemporal extension to SOBI [5], which is an extension 
of AMUSE [20] and has been used in previous studies 
[21, 22]. We chose sPCA (with spatial cost function) to 
solve the BSS problem using a completely different pen-
alty/optimization procedure than the other algorithms. 
Note that dimension reduction is included in sPCA. We 

Table 1  A summary of the selected decomposition algorithms and their parameters

α-parameter weighs spatial- and temporal separation, a λ-parameter relates to the number of non-zero pixels

sPCA sparse principal components, stICA spatiotemporal independent component analysis, stJADE spatiotemporal joint approximation diagonalization of 
eigenmatrices, and stSOBI spatiotemporal second-order blind identification

Algorithm Parameter (λ or α) Domain Description

sPCA λ = 150 Spatial Extension of principal component analysis (PCA) by sparse constraint, i.e., uses L1 penalty on 
the spatial loadings in the optimization procedure. λ denotes the number of non-zero pixels, a 
parameter equal to 150 and 250 corresponds to territories with 4.3 and 5.6 mm in diameter

λ = 250 Spatial

stICA α = 0.0 Temporal Separation by optimizing a joint entropy energy function based on mutual entropy and infomax 
with a kurtosis-based cost function. α = 0.8 has been used previously [11, 12], i.e., weighs 0.8 in 
spatial and 0.2 in temporal separation

α = 0.8 Spatiotemporal

α = 1.0 Spatial

stJADE α = 0.0 Temporal Joint diagonalization of fourth-order cumulant tensor in separation procedure. A low α weighs 
more on temporal separationα = 0.5 Spatiotemporal

α = 1.0 Spatial

stSOBI α = 0.0 Temporal Autocovariance matrices (fixed number, 12) for joint diagonalization of a set of symmetrized 
multidimensional autocovariances [28, 29]. Similar to stJADE, a low α weighs more on temporal 
separation

α = 0.5 Spatiotemporal

α = 1.0 Spatial



Page 4 of 7Rohlén et al. BMC Research Notes          (2022) 15:207 

anticipate that all these algorithms, together with their 
various parameters, should represent a broad spectrum 
of the instantaneous linear BSS space.

We calculated a baseline for the algorithms’ compari-
son; no decomposition (ND). As with the decomposition 
algorithms, we computed mean values in the overlapping 
ROIs of different sizes (20 × 20  mm, 10 × 10  mm, and 
5 × 5  mm), i.e., ND20, ND10, and ND5. Thus, we com-
puted 1m

∑
m∈R

j
i

Ym , where Ym is the observed data vector 
at pixel m, and Rj

i denotes a set of indexes in the image 
where j is ND20, ND10, or ND5 and i is one of the over-
lapping ROIs. Note that i is of different lengths depend-
ing on j due to changing ROI sizes.

Performance evaluation
The firing pattern similarity between each component 
and MU was calculated using the RoA metric calculated 
as RoA = 100× cj/(cj + Aj + Bj) , where cj is the num-
ber of firings of the jth firing pattern that was identi-
fied, Aj and Bj are the number of false identified firings 
and unmatched firings in the jth firing pattern, respec-
tively. The tolerance between each firing of a MU and a 
component was set to 30 ms motivated by the unknown 
electromechanical delay [23] and potential noise of the 
decomposed component’s causing variation in each esti-
mated component’s firings. We divided RoA of each algo-
rithm into different groups of success, i.e., no-success 
( 0% ≤ RoA < 50% ), semi-success ( 50% ≤ RoA < 75% ), 
and high-success ( 75% ≤ RoA ≤ 100% ). The motivation 
behind the thresholds is that 50% RoA is around the peak 
value for “no-decomposition,” and 75% RoA is around the 
average value in the successfully identified RoA group in 
[12].

To determine whether there was a pairwise difference 
in median RoA between stICA08 and the other decom-
position algorithms, we tested the pairwise differences 
in median RoA using the two-sided Wilcoxon signed-
rank test. The stICA08 was used as a reference algorithm 
because it has been used in previous studies [11, 12]. The 
p-values were adjusted for multiple testing based on the 
false discovery rate [24].

To quantify the agreement of detected sets of com-
ponents between the different algorithms, we used the 
common id ratio (CIDR) metric that we define as the car-
dinality of intersection of sets divided by the minimum 
cardinality in each set where the identified stICA08 MU 
indices were used as a reference. The CIDR takes a value 
between 0 and 1, where CIDR = 1 means that we found 
the same set of components, and CIDR = 0 means that 
none of the detected components of the two methods is 
equal.

Results
Performance evaluation: firing pattern
As a primary analysis, the high-success group is con-
sidered, as it relates to the successful one-third [12]. A 
secondary analysis relates to the semi-success group. 
Regarding the primary analysis, stICA08, stICA10, 
stJADE00, stJADE10, stSOBI00, stSOBI05, and stSOBI10 
identified 2–9 components (2–10%) with RoA larger than 
75% (Fig. 2A). There was no pairwise difference in median 
RoA between stICA08 and stICA10 (p = 0.21), stSOBI00 
(p = 0.17), and stSOBI10 (p = 0.07). For all other algo-
rithms, there was a statistically significant difference. ND 
and sPCA performed the worst, where 91–99% belonged 
to the no-success group.

Regarding the secondary analysis, there was no pair-
wise difference in median RoA between stICA08 and 
stICA10 (p = 0.26). For all other algorithms, there was a 
statistically significant difference. See the Additional file 
for examples and detailed descriptions (Additional file 1: 
Fig. S1–S3 and Table S1–S2).

Performance evaluation: agreement between detected sets 
of components
For the high-success group, 5 out of 6 algorithms had 
CIDR = 1.00, whereas stJADE00 had 0.00, meaning it 
complements stICA08 with a different set of components 
(Fig.  2A). None of the other algorithms did identify the 
same components as stJADE00 either (Additional file 1: 
Table  S1). For the semi-success group, the CIDR range 
was 0.38–0.81 ( 0.58± 0.14 , excluding ND and sPCA). 
stICA10, stJADE and stSOBI found about the same num-
ber of components (or more), and they centred at about 
CIDR = 0.6 (Fig.  2B), indicating improvement potential 
concerning stICA08. For the no-success group, the CIDR 
range was 0.79–0.98 ( 0.85± 0.06 , excluding ND and 
sPCA).

Discussion
We compared the performance of four different spati-
otemporal decomposition algorithms and parameter set-
tings for identifying single MUs in UUS image sequences 
of skeletal muscle low force voluntary isometric con-
tractions. There are four main findings: (1) Out of these 
algorithms, no algorithm significantly improved the MU 
identification success compared to stICA08. (2) stICA 
with spatial approach and stSOBI with spatial or tempo-
ral approach had the best overall performance. (3) There 
was a strong agreement between different algorithms’ 
identified components. However, there were algorithms 
with complementary successful detections. (4) When 
no decomposition method was applied, 96–99% of the 
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components belonged to the no-success group with an 
average agreement below 30%.

We found that stICA10 (spatial) and stSOBI00 (tem-
poral) performed similarly in the high-success group. 
These two algorithms use entirely different cost func-
tions. The former considers sparse territories, and the 
latter considers autocorrelated twitch trains, making 
sense because they should be sparse and autocorre-
lated due to the biological nature of the MU and twitch. 
Interestingly, stSOBI00 and stSOBI10 find the same 
high-RoA components, suggesting that temporal and 
spatial dependence are robust features for identification 
that could be adapted more explicitly using twitch-like 
a priori information. stICA00 (temporal) did not have 
any component that belonged to the high-success group 
suggesting that the twitch trains are not sparse, which 
also makes sense due to the non-stationary behaviour of 
twitches during an unfused tetanic contraction [25, 26]. 
Also, stJADE00 and stJADE10 found a few high-RoA 
units. A possible explanation why temporal stJADE00 
managed to identify high-RoA components, which 
stICA00 could not, could be that the joint diagonaliza-
tion approach is more robust against local minima and 
noise [4]. Also, stJADE00 complements the other algo-
rithms with three new high-RoA components that were 
not identified by any other algorithm (Fig. 2A).

In conclusion, these findings suggest two things. 
(1) The choice of instantaneous decomposition algo-
rithm is not critical for the present task. (2) There is 
an improvement potential to optimize the BSS cost 
function to detect more MUs in experimental image 
sequences of voluntary contracting skeletal muscles.

Limitations
We assumed the firing pattern should be similar in 
EMG and UUS domains and the electromechanical 
delay was within the tolerance parameter in RoA [12], 
which is the only way to quantify successful identifica-
tion in this case. We assumed an instantaneous linear 
mapping of the mixing matrix. However, a previous 
study suggests that the linear BSS algorithms may 
recover nonlinear mixed sources accurately if the input 
dimension is sufficiently higher than the source dimen-
sionality [27].

Abbreviations
UUS: Ultrafast ultrasound; MU: Motor unit; BSS: Blind source separation; stICA: 
Spatiotemporal independent component analysis; stJADE: Spatiotemporal 
joint approximation diagonalization of eigenmatrices; stSOBI: Spatiotemporal 
second-order blind identification; sPCA: Sparse principal component analysis; 
RoA: Rate of agreement; CIDR: Common id ratio; MUAP: Motor unit action 
potential; EMG: Electromyography; ND: No-decomposition; TVI: Tissue velocity 
images; ROI: Region of interest.

Fig. 2  Performance evaluation of the decomposition algorithms (red points) with stICA08 (blue points) as the reference algorithm. The comparison 
between the algorithms’ performance is based on (1) firing pattern agreement between the components and the EMG reference (RoA), and 
(2) agreement between the different algorithms’ identified component sets (CIDR). The components’ RoA values were divided into groups; A 
high-success group (75% ≤ RoA ≤ 100%), and B semi-success group (50% ≤ RoA < 75%). Note that the number of components at the x-axis denotes 
each algorithm’s number of components within the pre-defined group (high-success or semi-success)
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