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Abstract 

Objective:  Multiplex immunohistochemistry (mIHC) and multiplexed ion beam imaging (MIBI) images are usually 
phenotyped using a manual thresholding process. The thresholding is prone to biases, especially when examining 
multiple images with high cellularity.

Results:  Unsupervised cell-phenotyping methods including PhenoGraph, flowMeans, and SamSPECTRAL, primarily 
used in flow cytometry data, often perform poorly or need elaborate tuning to perform well in the context of mIHC 
and MIBI data. We show that, instead, semi-supervised cell clustering using Random Forests, linear and quadratic dis-
criminant analysis are superior. We test the performance of the methods on two mIHC datasets from the University of 
Colorado School of Medicine and a publicly available MIBI dataset. Each dataset contains a bunch of highly complex 
images.
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Introduction
Several multiplex tissue imaging technologies have 
recently been developed for probing single-cell spatial 
biology, including multiparameter immunofluorescence 
[1], multiplex immunohistochemistry (mIHC) [2] and 
multiplexed ion beam imaging (MIBI) [3].

The spatial capabilities of these new technologies offer 
up the potential for researchers to develop a novel under-
standing of the biological mechanisms underlying cellu-
lar and protein interactions in a wide array of scientific 
contexts. These platforms are rapidly developing and 
all produce data of a similar structure: two dimensional 
images of tissue at the resolution of cells and nuclei, 

where proteins in the sample have been labeled with anti-
bodies called “markers” that attach to cell membranes.

mIHC data collected from platforms such as Vectra 3 
or Vectra Polaris typically have 6–8 markers [4], while 
some platforms like MILAN can have around 40 markers 
[5]. MIBI images have 40–50 markers [3].

mIHC and MIBI technologies have many data pre-
processing and analyses steps that have not yet been 
uniformly implemented. Cell-phenotyping, defined as 
identification of cell populations based on marker expres-
sion, is a challenging process in this context. In most of 
the current cell-phenotyping approaches, researchers 
require to manually set a threshold intensity value for 
every marker, and

cells are then phenotyped based on the binarized 
expression of all the markers. For example, CD4 T cells 
are positive for markers CD3 and CD4 and negative for 
CD8. This manual phenotyping (gating) approach is 
cumbersome for high parameter panels and depends on 
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the reliability and expert knowledge of the user selecting 
positive cells or choosing thresholds, which may differ 
between users. Thus, manual gating is not only prone to 
human error but also time consuming and costly. Algo-
rithms have already been developed to tackle these same 
phenotyping issues for multiplex technologies that ana-
lyze single cells in a liquid suspension without spatial 
resolution, namely flow and mass cytometry [6]. In par-
ticular, automated gating methods using machine learn-
ing algorithms have become more and more popular as 
the number of analyzed parameters has increased [7].

Our aim in this paper is to compare automated cell-
phenotyping algorithms in the context of mIHC and 
MIBI datasets. We adapt approaches originally developed 
for two non-spatial technologies, flow and mass cytom-
etry, and test our algorithms on two mIHC datasets [4, 8] 
obtained from the University of Colorado School of Med-
icine and one publicly available MIBI dataset [9].

Main text
Existing phenotyping algorithms
Unsupervised learning algorithms
Unsupervised cell-phenotyping algorithms partition cells 
into different classes based on their multiplex marker 
expression without using any prior knowledge [10]. 
These methods are initially unbiased and usually time 
and memory efficient as well. In addition, novel cell types 
and populations can be discovered by not biasing clus-
tering algorithms with prior information about marker 
expression. However, these methods suffer from several 
major limitations. For example, once the cells have been 
classified by an unsupervised algorithm, researchers 
manually gate the obtained classes to compare meaning-
ful cell types (e.g. CD4 T cell, CD68+ macrophages etc.). 
This step can be cumbersome and again prone to human 
error. PhenoGraph [11], flowMeans [12] and SamSPEC-
TRAL [13] are some of the most popular unsupervised 
cell-phenotyping algorithms [6, 7].

Semi‑supervised learning algorithms
Semi-supervised cell-phenotyping approaches typically 
involve building a predictive model using multiplex 
marker expression from a subset of cells in a dataset, 
called the training set, that have been manually pheno-
typed [14]. The built models are then used to phenotype 
the remaining cells, or the test set. Unlike unsupervised 
methods, the cells in this case are directly assigned to 
existing phenotypes which obviates the problem of 
matching arbitrary clusters to meaningful cell types. 
One can argue that the first step of manually phenotyp-
ing cells in the training set is subjected to human error. 
However, the size of the training set is usually just a 
fraction of the full dataset. Therefore, ensuring the 

purity of manual phenotyping of the training dataset 
should be easy relative to manually phenotyping all of 
the data; though this remains a practical limitation for 
all current approaches.

DeepCyTOF [15], CyTOF linear classifier [16] and 
ACDC [17] are popular semi-supervised methods in flow 
and mass cytometry [7]. CyTOF linear classifier, which 
is based on linear discriminant analysis (LDA), has been 
shown to outperform more complex algorithms like 
DeepCyTOF, ACDC on several CyTOF datasets [7, 16]. 
All the above methods are briefly described further in 
Additional file 1: Table S1.

LDA assumes that the data has equal variance across 
groups and is normally distributed. Though these 
assumptions may hold for CyTOF data, in mIHC datasets 
both assumptions are violated. To address these prob-
lems, we consider more general machine-learning algo-
rithms such as quadratic discriminant analysis (QDA) 
[18] and Random Forest [19]. QDA is similar to LDA 
but does not require equal variance across groups. The 
decision tree-based Random Forest method is robust 
for non-normal data and has several additional advan-
tages demonstrated by [20]; these include minimal tun-
ing parameters, excellent off-the-shelf prediction, honest 
estimates of classification through out-of-bag samples, 
and stable prediction behavior. Therefore, in the context 
of mIHC and MIBI data, we propose to use Random For-
est and compare its performance with LDA and QDA.

Datasets
Our analysis incorporated three multiplex tissue imag-
ing datasets: an ovarian cancer dataset [8] acquired on 
the mIHC Vectra Polaris platform (Akoya Biosciences), 
a lung cancer dataset [4] acquired on the mIHC Vec-
tra 3.0 system (Akoya Biosciences), and a breast cancer 
dataset [9] collected on the MIBI platform (IonPath, 
Inc). The two mIHC datasets were segmented and phe-
notyped using inForm (v2.4.8, Akoya Biosciences), com-
mercially available software for Vectra data [21], and the 
MIBI dataset was phenotyped in MATLAB using deep 
learning-based methods [9]. For each cell, the expression 
data is available for multiple markers. The datasets are 
described in detail below and Table 1 lists the overall dis-
tribution of the cell types in different datasets.

mIHC ovarian cancer dataset
There are 302,147 cells from 132 subjects. There are five 
different cell types: CD19+, CD3+/CD8-, CD3+/CD8+, 
CD68+, CK+/Ki67+. There are six markers, CD19, CD3, 
CK, CD8, Ki67, CD68 observed in each of the cells. More 
details on this data can be found at [8].
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mIHC lung cancer dataset
There are 1,590,327 cells from 153 subjects each with 3-5 
images (in total, 761 images). There are six different cell 
types: CD14+, CD19+, CD4+, CD8+, CK+, Other+ 
(meaning they do not belong to any of the indicated phe-
notypes). There are five markers, CD19, CD3, CK, CD8, 
CD14. More details on this data can be found at [4].

MIBI breast cancer dataset
The triple-negative breast cancer (TNBC) MIBI data-
set [9] has 201,656 cells from 43 subjects and one image 
per subject. It has six different cell groups: Immune, 
Endothellial, Mesenchymal-like, Tumor, Keratin-positive 
tumor and Unidentified. There are 44 markers available, 
such as CD3, CD8, CD63, Ki67, and Vimentin.

Results
We primarily focused on the semi-supervised methods in 
this paper. First, we briefly highlighted some of the major 
problems of the unsupervised methods using the mIHC 
lung cancer dataset. Then, we compared the usability and 
performance of Random Forest with LDA and QDA in all 
three datasets.

Unsupervised methods
In the mIHC lung cancer dataset, we clustered the cells 
of one subject at a time using the unsupervised methods, 
PhenoGraph, SamSPECTRAL and flowMeans. T-dis-
tributed stochastic neighbor embedding (t-SNE) [22] has 

been used by researchers to visualize high-dimensional 
data in various contexts including flow and mass cytom-
etry [23, 24]. In Fig. 1, for a particular subject, we com-
pared the true cell labels with the labels estimated using 
the unsupervised methods, overlaid on the first two 
t-SNEs of the marker data. PhenoGraph and SamSPEC-
TRAL depend on the choice of several pre-specified 
hyper-parameters. PhenoGraph depends on the number 
of nearest neighbors (NN’s), whereas SamSPECTRAL 
depends on two quantities known as sigma and separa-
tion factor. For PhenoGraph, we considered 4 different 
NN sizes, namely 0.5%, 1%, 5% and 10% of the total num-
ber of cells. For most of the subjects, including the one 
depicted in Fig.  1, PhenoGraph classified the cells into 
a large number of clusters when NN size was small. For 
larger NN sizes, PhenoGraph generated around 6 clus-
ters but it would require additional evaluation of the 
clusters to properly map them with true and meaningful 
cell-labels. Similarly, the performance of SamSPECTRAL 
was highly variable depending on the input values of the 
tuning parameters, and none of the combinations yielded 
clusters that remotely resembled the true cell labels. On 
the other hand, the result from flowMeans looked fairly 
close to the true cell-labels and it would require the least 
amount of post-clustering evaluation compared to the 
previous two methods.

We should reiterate that we did not provide a sys-
tematic comparison of the unsupervised methods here. 
Our goal was to briefly highlight the major difficulties 
with the unsupervised methods, namely that the results 
may vary significantly based on the choice of the tuning 
parameters and also, require additional evaluation of the 
obtained clusters for a meaningful mapping with the true 
cell-phenotypes.

Semi‑supervised methods
For each dataset, we randomly selected m training images 
(out of the total size, M) to train the models on and eval-
uated their performance on the remainder of the images. 
We varied m and for every choice of m, we considered 
5 repetitions. Results were aggregated across repetitions 
and summarized by prediction accuracy, adjusted rand 
index (ARI), and normalized mutual information (NMI).

mIHC ovarian cancer dataset
We considered four training set-sizes (m) which were 
fractions of the total size M, m = 7 ( 5% ), 13 ( 10% ), 20 
( 15% ), and 26 ( 20% ). Table  2 lists the mean (and stand-
ard deviation) of prediction accuracy, ARI, and NMI. 
Even for the smallest m, all three methods performed 
well, with Random Forest having the highest mean pre-
diction accuracy, ARI, and NMI. Random Forest also had 

Table 1  The frequency of cells belonging to different cell types 
in different datasets

Dataset Cell type Total cells

mIHC ovarian cancer CD19+ 15267 (5%)

CD3+/CD8- 15952 (5.3%)

CD3+/CD8+ 41008 (13.6%)

CD68+ 57632 (19.1%)

CK+/Ki67+ 172288 (57%)

mIHC lung cancer CD14+ 175878 (11.1 %)

CD19+ 154045 (9.7 %)

CD4+ 232878 (14.6 %)

CD8+ 124102 (7.8 %)

CK+ 594140 (37.4 %)

Other+ 309284 (19.4 %)

MIBI breast cancer Unidentified 1839 (1 %)

Immune 83336 (41.3 %)

Endothelial 2089 (1 %)

Mesenchymal-like 8479 (4.2 %)

Tumor 3177 (1.6 %)

Keratin-positive tumor 102736 (50.9 %)
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significantly lower standard deviation which accentuated 
its high robustness. As m increased, prediction accu-
racy, ARI, and NMI marginally improved for all three 
methods.

mIHC lung cancer dataset
We considered m to be, 4 ( 0.5% ), 8 ( 1% ), 15 ( 2% ), 23 
( 3% ) and 76 ( 10% ). Random Forest again outperformed 
LDA and QDA (Table 2). However, the prediction accu-
racy was significantly lower for the smaller training set-
sizes. Random Forest’s performance steadily improved 
as the training set-size (m) increased, whereas for LDA 
and QDA, the performance stayed nearly the same. 
We noticed a dip in the overall performance of all the 
methods in this dataset compared to the ovarian cancer 
dataset. Further details are provided in the Additional 
file 1. Additional file 1: Figs. S1–3 respectively show the 
accuracy of Random Forest for predicting every cell type, 
the proportion of predicted cell types vs every known cell 

type, and the overall intensity of CD19 marker in differ-
ent images.

MIBI breast cancer dataset
We considered three values of m, 2 ( 5% ), 4 ( 10% ) and 8 
( 20% ). Even with the smallest m, Random Forest achieved 
great prediction accuracy (Table 2). LDA was consistently 
poorer than Random Forest but its accuracy increased 
steadily as m increased. We did not report the perfor-
mance of QDA for this dataset since it often encountered 
an error due to “rank deficiency”, especially for small 
training sizes (refer to the Additional file 1: Table S2).

Limitations
We have noticed that cells of certain types can get incor-
rectly phenotyped if the corresponding markers are 
not informative enough. For example, in some subjects 
from the lung cancer dataset, CD19 marker intensity is 
not distinctive across different cell types which makes 

Fig. 1  Comparison of the cell labels estimated by PhenoGraph, flowMeans and SamSPECTRAL with the true cell labels for a particular subject. 
The top two rows show the scatter-plot of TSNE1 and TSNE2 for different cells colored by three different labels, true labels, estimated labels using 
flowMeans and estimated labels using PhenoGraph for varying number of nearest neighbor(NN)-sizes. The bottom two rows show the scatter-plot 
of TSNE1 and TSNE2 for different cells colored by the estimated labels using SamSPECTRAL for different values (from low to high) of sigma and 
separation factor (sep_fac)
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identifying CD19+ cells hard. It shall also be kept in 
mind that the mIHC datasets we analyzed were originally 
phenotyped using the inForm software. It is a possibility 
that the original phenotyping was inaccurate and thus 
our “ground truth”itself was biased.

The run-time comparison of the methods are pro-
vided in Additional file  1: Table  S2. We noted that 
LDA and QDA both took fractions of the time taken 
by Random Forest model. In the MIBI dataset, QDA 
encountered convergence error for some particular 
choices of the training set, especially with a smaller 
training set-size. Therefore, when there are large 

numbers of markers and cells, we recommend using 
LDA over Random Forest which would potentially sac-
rifice some degree of accuracy but be much more scal-
able. Besides, it should also be kept in mind that the 
semi-supervised methods in general can be unreliable 
for detecting rare cell-populations which would ideally 
require a specialist’s manual evaluation of the marker 
expression-profiles. In this study, all the datasets we 
considered, had 5–6 cell types. In future, we will check 
the applicability of the methods on multiplex imaging 
datasets which have a larger number of cell types.

Table 2  Prediction accuracy, ARI and NMI mean (± standard deviation) for different training set sizes in mIHC ovarian and lung cancer 
datasets and MIBI breast cancer dataset

Dataset Training size Method Accuracy ARI NMI

mIHC ovarian cancer 5% Random Forest 0.944 ± 0.004 0.888 ± 0.007 0.783 ± 0.010

LDA 0.899 ± 0.017 0.779 ± 0.047 0.642 ± 0.051

QDA 0.909 ± 0.007 0.821 ± 0.023 0.699 ± 0.018

10% Random Forest 0.949 ± 0.002 0.896 ± 0.004 0.795 ± 0.006

LDA 0.889 ± 0.010 0.748 ± 0.027 0.609 ± 0.028

QDA 0.919 ± 0.003 0.842 ± 0.007 0.720 ± 0.008

15% Random Forest 0.951 ± 0.002 0.899 ± 0.003 0.802 ± 0.006

LDA 0.898 ± 0.006 0.772 ± 0.018 0.633 ± 0.020

QDA 0.920 ± 0.001 0.848 ± 0.005 0.724 ± 0.006

20% Random Forest 0.952 ± 0.002 0.902 ± 0.002 0.806 ± 0.006

LDA 0.899 ± 0.007 0.774 ± 0.018 0.634 ± 0.023

QDA 0.922 ± 0.001 0.853 ± 0.003 0.727 ± 0.006

mIHC lung cancer 0.5% Random Forest 0.734 ± 0.179 0.575 ± 0.022 0.426 ± 0.018

LDA 0.668 ± 0.052 0.413 ± 0.102 0.363 ± 0.070

QDA 0.669 ± 0.048 0.459 ± 0.076 0.365 ± 0.036

1% Random Forest 0.755 ± 0.057 0.594 ± 0.021 0.450 ± 0.013

LDA 0.704 ± 0.057 0.486 ± 0.116 0.395 ± 0.068

QDA 0.692 ± 0.040 0.482 ± 0.067 0.387 ± 0.031

2% Random Forest 0.768 ± 0.009 0.608 ± 0.016 0.468 ± 0.011

LDA 0.686 ± 0.063 0.440 ± 0.133 0.374 ± 0.083

QDA 0.696 ± 0.019 0.472 ± 0.030 0.387 ± 0.010

3% Random Forest 0.777 ± 0.002 0.620 ± 0.008 0.480 ± 0.005

LDA 0.674 ± 0.064 0.424 ± 0.134 0.355 ± 0.084

QDA 0.687 ± 0.024 0.452 ± 0.044 0.373 ± 0.024

10% Random Forest 0.805 ± 0.001 0.665 ± 0.003 0.524 ± 0.003

LDA 0.709 ± 0.008 0.500 ± 0.024 0.393 ± 0.011

QDA 0.705 ± 0.011 0.475 ± 0.027 0.386 ± 0.011

MIBI breast cancer 5% Random Forest 0.951 ± 0.016 0.869 ± 0.037 0.772 ± 0.055

LDA 0.781 ± 0.135 0.618 ± 0.111 0.47 ± 0.065

10% Random Forest 0.971 ± 0.010 0.915 ± 0.027 0.853 ± 0.04

LDA 0.836 ± 0.038 0.632 ± 0.045 0.492 ± 0.045

20% Random Forest 0.983 ± 0.002 0.948 ± 0.008 0.903 ± 0.011

LDA 0.877 ± 0.010 0.714 ± 0.020 0.569 ± 0.018
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mIHC: Multiplex Immuno Histochemistry; MIBI: Multiplex Ion Beam Imaging; 
LDA: Linear Discriminant Analysis; QDA: Quadratic Discriminant Analysis.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13104-​022-​06097-x.

Additional file 1. Here, we provide a section explaining the overall dip in 
the performance of the methods in the mIHC lung cancer dataset. Figure 
S1–3. focus on the mIHC lung cancer dataset, and respectively show the 
scatter-plot of accuracy of Random Forest for predicting every cell type, 
the bar-plot of pro-portion of predicted cell types vs every known cell 
type, and the ridge-plot of overall CD19 marker intensity in the cells of dif-
ferent images. Table S1, 2. respectively list the summary of a few existing 
methods and the run-times of the methods in different datasets.
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