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Assessing the impact of non‑pharmaceutical 
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Chelsea Mbeke Kilonzo1, Mark Wamalwa1,3*   , Solange Youdom Whegang2 and Henri E. Z. Tonnang1 

Abstract 

Objective:  The outbreak of the novel coronavirus disease 2019 (COVID-19) is still affecting African countries. The 
pandemic presents challenges on how to measure governmental, and community responses to the crisis. Beyond 
health risks, the socio-economic implications of the pandemic motivated us to examine the transmission dynamics of 
COVID-19 and the impact of non-pharmaceutical interventions (NPIs). The main objective of this study was to assess 
the impact of BCG vaccination and NPIs enforced on COVID-19 case-death-recovery counts weighted by age-struc-
tured population in Ethiopia, Kenya, and Rwanda. We applied a semi-mechanistic Bayesian hierarchical model (BHM) 
combined with Markov Chain Monte Carlo (MCMC) simulation to the age-structured pandemic data obtained from 
the target countries.

Results:  The estimated mean effective reproductive number (Rt) for COVID-19 was 2.50 (C1: 1.99–5.95), 3.51 (CI: 
2.28–7.28) and 3.53 (CI: 2.97–5.60) in Ethiopia, Kenya and Rwanda respectively. Our results indicate that NPIs such as 
lockdowns, and curfews had a large effect on reducing Rt. Current interventions have been effective in reducing Rt 
and thereby achieve control of the epidemic. Beyond age-structure and NPIs, we found no significant association 
between COVID-19 and BCG vaccine-induced protection. Continued interventions should be strengthened to control 
transmission of SARS-CoV-2.
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Introduction
The emergence of COVID-19 pandemic was expected 
to have devastating consequences in Africa due to the 
weak healthcare systems [1–3]. However, fatalities have 
remained low and most cases are asymptomatic [4]. 
This is attributed to previous exposure to epidemics 
such as Ebola, demographic factors, host genetics and 

environmental factors [2, 5]. Apart from Africa’s young 
population, Bacillus Calmette − Guérin (BCG) vaccine 
against tuberculosis was proposed to reduce the severity 
of COVID-19 [6–8].

Most countries implemented NPIs to limit human-to-
human transmission of SARS-CoV-2 and therefore lower 
the reproduction number (R0)—the number of secondary 
infections acquired from a primary case [9–11]. It was 
imperative to quantify enforced NPIs in terms of their 
efficacy and appropriate use to influence and improve 
public health policy. Indeed, several models have been 
used to unravel COVID-19 [11–13].

Open Access

BMC Research Notes

*Correspondence:  mwamalwa@icipe.org

1 International Centre of Insect Physiology and Ecology (Icipe), P.O. 
Box 30772‑00100, Nairobi, Kenya
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-7714-2697
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-022-06171-4&domain=pdf


Page 2 of 7Kilonzo et al. BMC Research Notes          (2022) 15:283 

The aim of this study was to examine the association 
between age-structure and BCG vaccine-induced protec-
tion from COVID-19 and to assess the impact of NPIs 
implemented in Ethiopia, Kenya, and Rwanda.

Main text
Methods
Data sources
COVID-19 data (2020–2021) were obtained from the 
World Health Organization (WHO) and the Johns Hop-
kins University (JHU) repositories [14, 15]. Population 
data were sourced from United Nations (UN) records 
[16] while BCG vaccination records from 1980–2019 
(both sexes combined) were obtained from the WHO 
[17, 18].

BCG vaccination data were segmented into 10-year 
age-groups, and the mean percentage vaccination cover-
age (pvc) was calculated, assigning zero coverage to age-
groups above 40 years [19], (Additional file 1: Table S1). 
pvc was used to infer the number of BCG-vaccinated 
individuals (Nm) in country m (Eq. 11).

COVID-19 data were split into two age-groups, 0–39 
and 40 and above. This was based on the fact that BCG 
vaccination was introduced in EACs in the early 1980s, 
and therefore, only individuals aged below 39 years were 
assumed to be vaccinated by 2019 [19]. Finally, imple-
mentation dates of NPIs were obtained from the respec-
tive government websites and media houses (Additional 
file 1: Table S2).

Model formulation
At the onset of the pandemic, the Imperial College Lon-
don (ICL) proposed a BHM that uses observed deaths 
to infer the true number of infections [11]. Deaths were 
expressed as a function of infection-fatality-ratio, infec-
tion-to-onset, and onset-to-death distributions [11]. 
Infections were expressed as a product of the time-vary-
ing reproduction number (Rt) with a discrete convolution 
of previous infections weighted by an infection-to-onset 
distribution specific to SARS-CoV-2 [11]. Rt was inferred 
from the initial R0 before interventions and the effect 
sizes from the interventions [11]. The ICL model has 
been applied in several studies [11, 20–22] and its’ 
adapted structure used in this study is shown in Addi-
tional file 1: Figure S1.

Infection model specification
The infected population (c) on day (t) was modelled as a 
discrete renewal process. The model was initialized by a 
serial interval distribution (g) with density g(τ), whereby 
g is gamma distributed with a mean of 6.5 and standard 
deviation of 0.62 (Eq.  1) [23]. g is shared across all the 
countries [11].

The number of infections (ct,m) on day t, in country, m, 
were approximated by a discrete convolution function 
(Eq. 2).

Daily g was discretized by the serial interval ( gs ) (Eq. 3).

The current number of infections were determined by 
infections in the previous days, weighted by gs.
Rt,m is a function of interventions (Ik,t,m) imposed at 

time t in country m (Eq. 4) [11].

The implemented intervention (I) is denoted by k 
which is 1 if k is enforced in country m at time t, and 0 
otherwise. Exponentiation of Eq. 4 constrains R0, m to be 
positive. Further, α1, …7 determines the impact of each 
intervention on Rt, m. Prior distributions of α are Gamma 
distributed, αk ∼ Gamma(0.5, 1) . R0 assumes a prior dis-
tribution specified below (Eq. 5).

Death model specification
Daily deaths (dt, m) for days t ∈ {1, …, n} and countries 
m ∈ {1, …, p} were projected using a function dt, m = E[dt, 

m] whereby dt, m represents daily deaths, and it follows a 
negative binomial distribution with mean = dt, m and vari-
ance = dt,m + d2t,m/�1 , where ψ1 follows a positive half-
normal distribution (Eq. 6a and 6b) [11].

Observed deaths are associated with cases using the 
infection-fatality-ratio (ifr, probability of death given 
infection) of 0.1% and the infection-to-death (π) dis-
tribution [20]. The model applies an adjusted ifr (ifra) 
that incorporates the attack rate and the population 
size [20]. Therefore, ifrα =

AR0−39

ARα
 where AR0−39 is the 

(1)g ∼ Gamma (6.5, 0.62)

(2)ct,m = Rt,m

t−1∑
t=0

cτ ,mgt−τ

(3)gs =

s+0.5∫

τ=s−0.5

g(τ )d(τ ) for s = 2, 3 and g1 =

1.5∫

τ=0

g(τ )d(τ )

(4)Rt,m = R0,m exp(−

7∑
k=1

αk Ik ,t,m)

(5)
R0 ∼ Normal(2.4, |k|)where k ∼ Normal (0, 0.5)

(6a)dt,m ∼ Negative Binomial (dt,m, dt,m +
d2t,m

�
)

(6b)� ∼ Normal+(0, 5)
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age-group-specific attack rate. ARα =
cα
Nα

 where, cα is the 
number of infections in age-group α, and Nα the popula-
tion size. The infection-to-death (π) distribution consists 
of infection-to-onset (π′) and onset-to-death distribu-
tions. π was initialized using values from Verity et al.[11, 
20]. Infection-to-onset is Gamma distributed with a 
mean of 5.1 days and coefficient of variation of 0.86 while 
onset-to-death is also Gamma distributed with a mean of 
18.8 days and a coefficient of variation of 0.45 (Eq. 7) [11].

 The expected number of deaths dt, m, on day t, in country 
m was estimated by Eq. 8.

 where, cτ ,m is the number of new infections on day τ in 
country m. πm is discretized via Eq. 9

BCG vaccine‑induced protection
To assess vaccine-induced protection from COVID-19, 
the number of BCG-vaccinated individuals (Nm) in coun-
try m was assumed to have anti-SARS-CoV-2 antibodies. 
Nm was applied as a scaling factor to estimate susceptible 
individuals (St, m) on day t, in country m (Eq. 10).

The number of infections (it, m) on day t, in country m, 
was estimated by a discrete convolution function (Eq. 11).

The daily g was discretized by gs distribution (Eq.  3). 
Similarly, we computed Rt,m weighted by the interven-
tions (Ik, t,m) at time t in country m (Eq. 4). The expected 
number of deaths (dt, m) on day t, for country m was esti-
mated by Eq. 12.

 where, iτ ,m is the number of new infections on day τ in 
country m. πt-τ is discretized via Eq. 9.

(7)
πm ∼ ifrm.(Gamma(5.1, 0.86)+ Gamma(18.8, 0.45))

(8)dt,m =

t−1∑
t=0

cτ ,mπt−τ

(9)

πs,m =

s+0.5∫

τ=s−0.5

πm(τ )d(τ ) for s = 2, 3 andπ1,m =

1.5∫

τ=0

πm(τ )d

(10)St,m = 1−

∑t−1
j=0 ij,m

Nm

(11)it,m = St,mRt,m

t−1∑
t=0

cτ ,mgt−τ

(12)dt,m =

t−1∑
t=0

iτ ,mπt−τ

The SEIR and eSIR compartmental models
We explored an extension of the susceptible-exposed-
infectious-recovered (SEIR) model to compute Rt [24]. 
Ordinary differential equations (ODE) that describe the 
dynamics of this model, are extensively described in [24]. 
Moreover, we used the extended SIR (eSIR) model to pre-
dict Rt values [25, 26].

Model implementation
Modelling was implemented in R (version 4.0.4) using 
ICL covid19model version 10 [11]. The ICL model was 
run in Stan R package using 500 iterations [11, 27]. 
Computation of the Root Mean Square Error (RMSE) 
and Mean Absolute Error (MAE) was executed in the 
ehaGoF R package [28] while the SEIR model was exe-
cuted using the SEIR-fansy R package [24].

Model validation and comparison
The reliability of the ICL model was assessed by com-
paring model predictions against the observed data 
between 06/16/20 and 04/11/2021 using RMSE and 
MAE metrics [29, 30]. Additional validation was per-
formed using an approach suggested by Flaxman et al. 
through an importance sampling leave-one-out cross 
validation scheme [11, 21, 28]. Moreover, we compared 
the ICL model with compartmental models using the 
predicted Rt and case-death-recovery counts [24–26].

Results
Scenario analysis of COVID‑19 trends
We evaluated the effectiveness of NPIs under two 
scenarios: presence or absence of an age-structured 
population and BCG vaccination. Assuming that the 
population is homogenous and not structured by age, 
the ICL model estimated Rt values were 2.50 (C1: 1.99–
5.95), 3.51 (CI: 2.28–7.28) and 3.53 (CI: 2.97–5.60) in 
Ethiopia, Kenya and Rwanda respectively (Table 1).

We observed a good model fit between the predicted 
and the reported cases across East Africa. Larger RMSE 
values, particularly in Kenya, indicate a wider diver-
gence between the predicted and observed values. 
Similarly, the computed MAE values ranged between 
0.026–1.449 (Table  1). In general, lower RMSE and 
MAE values provide better support for the model fit.

Additionally, our results indicate that lockdowns and 
curfews profoundly reduced the Rt in Kenya (Fig.  1A) 
while in Ethiopia, the declaration of emergency and 
regional lockdowns reduced human-to-human trans-
missions (Fig.  1B). The dusk-to-dawn curfews in 
Rwanda had the most effect in lowering Rt. Beyond age-
structure, we found no significant association between 
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COVID-19 and BCG-vaccine induced protection (Fig. 2 
and Additional file 1: Figure S2, S3).

Discussion
Parameters such as Rt and serial interval are estima-
tors of the disease extent in a given country and they 
inform policy-makers about the most effective interven-
tions [32]. Our findings show that, Ethiopia, Kenya and 

Rwanda were at a critical point in 2020, whereby Rt val-
ues remained above 2, however, while infections were 
high, fatalities remained low. Indeed, this is an African 
paradox where COVID-19 infections have consistently 
remained high while fatalities are low [7].

Beyond under-estimation of the disease extent, mul-
tiple factors have been associated with the low fatali-
ties, namely, herd immunity due to anti-SARS-CoV-2 

Table 1  Comparison of predicted case-death counts and time-varying reproduction number (Rt)

 1 ICL (Rt) - Imperial College London (ICL) model estimates of the time-varying reproduction number (Rt). 
2eSIR (Rt) - the extended susceptible-infected-removed 

(eSIR) compartmental model estimates of the time-varying reproduction number. 3SEIR(Rt) - susceptible-exposed-infectious-recovered (SEIR) compartmental model 
estimates of the time-varying reproduction number. 4RMSE measures the model (ICL) prediction accuracy against the observed data in a regression analysis. It is 
the Root of the Mean of the Square of Errors between the predicted and the observed COVID-19 cases and deaths. 5MAE measures the accuracy of the model fit in 
terms of performance in its predictions - the Mean of Absolute value of Errors between the predicted and the observed COVID-19 cases and deaths. The mean Rt 
values projected by the ICL model overlapped with the SEIR and eSIR models. However, the ICL model tends to overestimate Rt values while the SEIR model had less 
variability (Table 1) [31]

Country Cases Deaths ICL (Rt)
1 eSIR (Rt)

2 SEIR (Rt)
3 RMSE4 MAE5

Ethiopia (ET) 363,714 6412 2.50 (1.9–5.95) 2.75 2.98 4.257 0.027
ET + BCG 363,714 6412 1.67 (1.5–3.19) 4.138 0.026

ET(40 +) + BCG 134,716 5408 5.25 (3.3–8.16) 3.558 0.026

Kenya (KE) 252,938 5266 3.51 (2.8–7.28) 2.70 2.51 4.652 0.033
KE + BCG 252,938 5266 5.34 (3.5–7.99) 31.014 0.219

KE(0–39) + BCG 159,259 821 5.18 (3.8–7.87) 33.642 1.449

KE(40 +) + BCG 93,679 4445 5.15 (3.2–7.67) 3.701 0.031

Rwanda (RW) 99,559 1322 3.53 (2.7–5.60) 3.10 2.03 0.932 0.051
RW + BCG 99,559 1322 6.32 (4.53–13.34) 0.962 0.053

RW(0–39) + BCG 62,693 180 5.21 (3.5–8.62) 0.151 0.057

RW(40 +) + BCG 36,866 1142 5.93 (4.4–9.97) 0.834 0.052

Fig. 1  Country-level estimates of infections, deaths and Rt. Top: daily number of infections, brown bars are reported infections, blue bands are 
predicted infections, dark blue 50% credible interval (CI), light blue 95% CI. Bottom-left: daily number of deaths, brown bars are reported deaths, 
blue bands are predicted deaths. Bottom-right: time-varying reproduction number (Rt), dark-green 50% CI, light-green 95% CI



Page 5 of 7Kilonzo et al. BMC Research Notes          (2022) 15:283 	

antibodies, climate, comorbidities and demographic 
structure [5]. These factors have not been studied conclu-
sively to establish their association with COVID-19 [5].

While BCG vaccine offers cross-protection against 
other diseases, it has also been proposed to reduce the 
severity of COVID-19 [6, 33]. However, our findings 
show that there is no linkage between BCG vaccination 
and COVID-19 prevalence. In fact, the WHO did not 
find evidence of BCG vaccine-induced protection from 
COVID-19 [34].

Africa’s predominantly young population, with fewer 
comorbidities has been associated with the low preva-
lence of COVID-19 relative to other continents [35, 36]. 
Indeed, we observed a negative correlation between Rt 
and age-structured case-death counts. It is notewor-
thy that, in this study, the susceptible population was 
segmented according to age and BCG vaccination sta-
tus prior to estimation of posterior parameters. Con-
sequently, age had a confounding effect on Rt and 
case-death counts wherein the effect of BCG vaccination 
could not be separated from the effect of age-structure. 
Generally, majority of COVID-19 cases were identified to 
be in the age group 30–39 while most deaths comprised 
of those aged above 40 [14].

Limitations
The ICL model uses observed deaths to infer the true 
number of infections [11]. While this approach over-
comes uncertainties associated with asymptomatic cases 
and low testing in the African context, inferring infec-
tions from deaths to estimate the burden of the disease 
is challenging given the low mortality recorded in Africa. 
Further, some parameters were set by assumption or 

used values from literature, which significantly affect the 
parameter estimation.
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