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Abstract 

Objective:  Atrial Fibrillation (A-fib) is an abnormal heartbeat condition in which the heart races and beats in an 
uncontrollable way. It is observed that the presence of increased epicardial fat/fatty tissue in the atrium can lead to 
A-fib. Persistent homology using topological features can be used to recapitulate enormous amounts of spatially 
complicated medical data into a visual code to identify a specific pattern of epicardial fat tissue with non-fat tissue. 
Our aim is to evaluate the topological pattern of left atrium epicardial fat tissue with non-fat tissue.

Results:  A topological data analysis approach was acquired to study the imaging pattern between the left atrium 
epicardial fat tissue and non-fat tissue patches. The patches of eight patients from CT images of the left atrium heart 
were used and categorized into “left atrium epicardial fat tissue” and “non-fat tissue” groups. The features that distin-
guish the “epicardial fat tissue” and “non-fat tissue” groups are extracted using persistent homology (PH). Our result 
reveals that our proposed research can discriminate between left atrium epicardial fat tissue and non-fat tissue. Spe-
cifically, the range of Betti numbers in the epicardial tissue is smaller (0–30) than the non-fat tissue (0–100), indicating 
that non-fat tissue has good topology.
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Introduction
Atrial fibrillation (A-fib) is a heart disorder characterized 
by an abnormal heart beat in which the heart races and 
beats in an unpredictable way. It is seen that A-fib results 
in the development of blood clots in the upper chamber 
of the heart which later flow to different organs and con-
fine the blood supply to tissues and elicit heart attacks. 
It is the most prevalent type of arrhythmia, and causes a 
higher mortality rate worldwide. It is assumed the mor-
tality and morbidity related to A-fib can significantly 
increase up to three-fold within the next 30 years [1–3]. 
The presence of elevated epicardial fat exists in patients 

with permanent A-fib [4]. The epicardial fat is found on 
the top of the left atrium close to the left atrial appendage 
and lateral to the mitral isthmus and is more in the supe-
rior half of the left atrium than in the inferior half [4, 5]. 
The peri-atrial epicardial fat may contribute to the forma-
tion of A-fib by obstructing the flow of electrical signals 
to all regions of the heart [4]. Here in this study, our main 
concern will be on the epicardial fat present in the left 
atrium. In past few decades, medical imaging data has 
been piling up in abundance. Medical imaging provides 
tremendously meaningful information which can be used 
to extract patterns and can be saved for future reference. 
With the recent up gradation of computational methods, 
researchers have offered a variety of concepts and tools 
that may help to recognize a specific disease pattern 
through topological features. Topological Data Analysis 
(TDA) gives a fresh perspective in this field to analyze the 
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datasets using topological approaches. The fundamen-
tal goal of TDA is to build tools for studying qualitative 
characteristics of data using ideas and results from geom-
etry and topology [6]. PH is one of the TDA approaches 
for detecting topological features of data. This method is 
based on algebraic computation, which provides an effec-
tive theoretical framework for understand qualitative 
characteristics of data with complex structures [6]. Here, 
we introduce a method that allows the extraction of top-
ological features that differentiate “left atrium epicardial 
fat tissue” and “non-fat tissue” group patients.

Main text
Methods
Data information and preparation
This work included eight male patients with A-fib in 
52–61 age groups. Our work was based on delayed 
enhancement cardiac CT image datasets obtained by ten 
sets of time frames at the same position using different 
contrast mediums, each containing one complete cardiac 
cycle. Philips computerized tomography instrument was 
utilized to obtain the image dataset of. Each patient’s data 
set included 392 images with 512 × 512 dimensions that 
covered the entire thoracic region.

All the 392 images were stacked up to get a 3D view of 
the thoracic region. Then we extracted only those images 
which included only the heart. These images were 204 
in number. Since the thoracic region contains the heart, 
ribcage and spinal cord, which can make difficult the vis-
ualization of the heart, that is the rationale for our clear-
ing out the surrounding structures by removing the pixels 
representing these structures. The 3D view was visualized 
through the Volume Viewer App of MATLAB R2018a. 
After that, a masking filter was applied to these images 
to highlight the required area by changing the color of 

the original images. An image display threshold setting 
of –190 to –30 Hounsfield Units (HU) was identified for 
epicardial fat on grayscale; other research also suggested 
a threshold of -200 to -50 HU [5, 7]. The images were sent 
to mask the pixel values which lie between -190 to -30 
HU. The fat tissues on the atrium of the heart were iden-
tified using the pixel value range masked over the entire 
dataset. The above-mentioned methodology has already 
been described in our previously published study [8]. 
We extracted the desired dataset of 36 images from each 
patient’s data which contains the fat region of the atrium. 
We cropped these fat regions from all the images and 
made 36 patches of 32 × 32 dimensions. These 36 patches 
were concatenated to form one large patch. Additionally 
another 36 patches are extracted from the atrium con-
taining non-fat tissues and preceded the same way as 
mentioned (Fig. 1).

Persistent homology filtration
Key objects in topological data analysis are filtered 
simplicial complexes, called filtrations. Homology is a 
method for in an accurate measuring the shape of a geo-
metric object by counting holes or features of various 
dimensions. Its output is a vector space for each non-
negative integer k whose dimension (called the k-th Betti 
number) is the feature count for holes of dimension k. 
This notion extends to filtered simplicial complex by pro-
ducing a “persistence vector space”, the analogue of vec-
tor spaces, as well as the analogue of dimension, which 
is called a persistence barcode or persistence diagram. 
These PH diagrams can be thought of as finite collections 
(unordered) of intervals, and one uses various algebraic 
combinations of the lengths of the intervals as well as 
their midpoints [9].

Fig. 1  (i) Patch representation of epicardial fat tissue. (ii) Patch representation of Non-fat tissue
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Filtration is the first step of PH which produces a series 
of simplicial complexes for a scale proximity parameters 
(ε). We observe the filtration procedure for a point cloud 
data set where each point is surrounded by a sphere of 
radius ε. We draw an edge between two spots at each 
intersection of two spheres. Filtering data creates a sim-
plicial complex space from which PH quantifies the 
presence of n-dimensional holes, which include 0-dimen-
sional holes, 1-dimensional holes, circles/loops/tunnels, 
and 2-dimensional holes. Since the best value for the 
scale ε cannot be determined, the primary principle of 

PH is to move through all possible values (0) to see how 
the homology of these components changes [10]. We 
evaluate the times of birth (ε emerges) and death (ε van-
ishes) for each n-dimensional structure (Fig. 2).

Results and discussion
In left atrium epicardial fat tissue, we see the range of 
Betti numbers varies less (0–30), while in the non-fat tis-
sue, the range of the Betti numbers is large (0–100). After 
Betti number, we plotted PH. Figure 3 shows the PH dia-
grams of left atrium epicardial fat and non-fat tissue. In 

Fig. 2  Topological data analysis workflow with imaging signal input

Fig. 3  (i) PH of epicardial fat tissue. (ii) PH of Non-fat tissue.
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the diagram of epicardial fat tissue, the points are closer 
towards the diagonal line, which means a topology with 
many small holes, but in non-fat tissue, the points are 
more scattered and concentrated away from diagonal that 
means topology is smoother on a small scale. This is the 
other way to calculate the pattern between two groups of 
tissues.

Fat tissues are the adipose tissue that helps in storing 
energy, and in distress, they provide support to the system 
for the proper execution of body functions. They insu-
late the body and act as an endocrine organ. The adipose 
tissue between the visceral pericardium and the myo-
cardium is known as epicardial fat [11]. The increased 
epicardial fat on the left atrium wall hampers electrical 
conduction. Several studies have been reported that pro-
vide evidence of epicardial fat in the atrium causing A-fib 
[12, 13]. To measure cardiac fats, a couple of imaging 
modalities such as magnetic resonance imaging (MRI), 
echocardiography, and computed tomography (CT) are 
currently accessible in the market. However, detection 
of the fat can need either manual strategies which can be 
tedious or using some available strategies [14–17]. TDA 
combines algebraic topology and statistical learning tech-
niques to provide a mathematical foundation for studying 
the shape of data. TDA also offers dimensionality reduc-
tion and noise stability. Here, we applied PH, an algebraic 
method of TDA that discover the topology of data to 
find new and distinctive features. The basic idea behind 
PH is to replace data points with a parametrized family 
of simplicial complexes, which can generally be depicted 
as a union of points, edges, triangles, tetrahedrons, and 
higher-dimensional polytopes, and encode the change 
of the simplicial complexes’ topological features (such as 
the number of connected components, holes, and voids) 
across various parameters for data analysis [18–20]. Our 
PH diagrams represent the distinct comparison between 
fat tissue and non-fat tissues in our data. Our results 
have shown that this method may help in identifying the 
fat tissue from non-fat tissue for better stratification. In 
conclusion, by analyzing CT patches using a topological 
data analysis approach known as persistent homology, we 
have identified patterns in barcodes and persistence dia-
grams that discriminate cardiac patients whoexperience 
epicardial fat tissue versus those who do not have epicar-
dial fat tissue. While promising, our results will need to 
be validated on a larger cohort.

Limitations of the study
We have used very small number of the patients with 
A-fib. The data was validated under the supervision of 
cardiologists.

Abbreviations
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