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Abstract

Objectives: An accurate exponentially fitted numerical method is developed to solve the singularly perturbed time
lag problem. The solution to the problem exhibits a boundary layer as the perturbation parameter approaches zero. A
priori bounds and properties of the continuous solution are discussed.

Result: The backward-Euler method is applied in the time direction and the higher order finite difference method is
employed for the spatial derivative approximation. An exponential fitting factor is induced on the difference scheme
for stabilizing the computed solution. Using the comparison principle, the stability of the method is examined and
analyzed. It is proved that the method converges uniformly with linear order of convergence. To validate the theoreti-
cal findings and analysis, two test examples are given. Comparison is made with the results available in the literature.

The proposed method has better accuracy than the schemes in the literature.
Keywords: Accurate numerical method, Exponentially fitted method, Stability and uniform convergence

Introduction

A differential equation in which its highest order deriva-
tive term is multiplied by a small parameter is known as
a singularly perturbed differential equation (SPDE). It
commonly occurs in the modeling of chemical processes,
fluid flows, water quality problems in river networks,
mechanical systems and simulation of oil extraction from
underground reservoirs [1]. The solution of such type
of equation possesses a multi-scale character that varies
quickly in the boundary layer region and it slows in the
outer layer regions.

Due to the multi-scale character of the solution, the
classical numerical methods fail to give an accurate
result. Currently, it becomes interesting to develop a
numerical method which gives accurate results; and
its convergence does not depend on the perturbation
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parameter. For solving the considered problem in Kumar
et al. [2] proposed an adaptive mesh method using the
concept of entropy function. Hybrid scheme of the mid-
point upwind in the outer region and the central differ-
ence method in the boundary layer region are used in [3,
4]. Gowrisankar and Natesan [5] used the upwind finite
difference method on a piecewise uniform mesh. The
upwind finite difference method on Shishkin mesh is
used in [6]. Podila and Kumar [7] used a stable finite dif-
ference scheme, which works on a uniform and an adap-
tive mesh. An exponentially fitted scheme is discussed in
[8, 9]. The non-standard finite difference method is used
in [10]. The numerical schemes developed in [11-16]
works for both the large and small delay cases.

In this paper, we proposed a numerical scheme using
higher order finite difference scheme fitted by the expo-
nential fitting factor. Moreover, the main aim of this
study is to develop a more accurate, stable and uniformly
convergent numerical scheme for solving singularly per-
turbed convection-diffusion problem having small time
lag.
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In this paper, C is a generic positive constant, which
does not depend on the mesh parameters and the
perturbation parameter. The norm |.|, defined by
gl = max(nealg(s, )| is the maximum norm.

Continuous problem
Consider a class of singularly perturbed convection-dif-
fusion problem of the form
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Lemma 2.3 [18, 19] [Stability result] The solution of (1)
satisfies the bound

l2(s, )] < @ tlgll + max{ly )], 1Y (s, D), 6 O]}, (2)

where a is the lower bound of a(s) and | g|| = maxcq 1g(s, £)|

Zt(Sy t) + LZ(S) t) = _C(Sr t)Z(S,t - T) +g(5» t)r (S, t) €= (0: 1) X (0» T]r

Z(S, t) = wb(& t) on 7719 = [01 1] X [_":10]7
z(0,8) = Yyy@®) onny :={(0,£) : 0 <t < T},
z(Ly=vY, ) onn, :={(1,t):0<t <T},

where Lz(s,t) = —ezg(s,t) + b(s, t)zs(s, t) + a(s)z(s, t),
0<e«1l 1is the perturbation parameter and
7>0 is the delay parameter. The coefficients
b(S, t): a(s), C(S’ t): g(S: t) on 2 and Wb(s’ t)! wl(t)r wr(t)
on n=nUnUn, are assumed to be smooth
and bounded functions that satisfy the conditions
a(s) >a >0, c(s,t) >y >0, b(s,t) <B <0, a(s)+c(s,t) >0o0n
Q. Under these conditions, the problem exhibits a bound-
ary layer along s = 0 [2].

Properties of the analytical solution

In this part, we present the analytical aspects of the solu-
tion and its derivatives. The existence and uniqueness of
a solution of (1).

Lemma 2.1 [17, 18] The solution zﬁs, t) of (1) satis-
fies |z(s,t) — ¥p(s,0)] < Ct, (s,t) € 2=1[0,1] x [0, T],
where C > 0 is a constant that does not depends on e.

The operator L(s,t) = z(s,t) + Lz(s, t) of (1) satisfies
the following minimum principle.

Lemma 2.2 [19] Let (s, t) € C2() N COQ), satisfies
(s, ) =0 (s,2) € 92 =Q — Q. If Lv(s,t) <0, (s,£) € Q
, thenv(s,t) > 0,(s,t) € Q.

Lemma 2.4 [20, 21] The following bounds are satisfied
for the derivative of the solution z(s, t) of (1) with respect
tosandt

a2 (s, £) » B
as” ‘“(”8 exp(_es>>’ 3)

(s,t) € Q, n=0,1,2,3,4,

and

’812(5, £)

i | =6 6De =012 (4)

where B is lower bound of b(s, t).

Main text: numerical scheme

Temporal semi-discretization

Using Taylor’s series expansion for the delay term; using
a uniform mesh in ¢-direction with step size At = T /M
given by QM ={(t, =nAt,n=0,1,2,..,M,ty = T},
where M is the number of mesh points in [0, T]. Note
that T = rt for some positive integer r. Using the back-
ward-Euler formula, we get

2"(s) — 2" 1(s) ., d%z"(s)

1-— b
(1 —zc(s, tn) AL e

+ b(S, t}’l)

dz"(s)
s

+ (a(s) + c(s, tn)2"(5) = g (5, tw). (5)
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Equivalently, we write Spatial discretization
- . The spatial domain [0, 1] into N equal num-
e d“Z"(s) ¥ bis, 1) dz"(s) + P(s,£,)Z"(s) = R(s, £,,), Der of sub-intervals with the length of 4 is given by
ds? ds 6 0 =s0,81,...,.sn =1 and s; = ih,i =0,1,2,..,N. Assume
©) smooth function Z(s) = Z"(s) = Z(s,t,) in the interval
[0, 1]. From Taylor’s series expansion, we have
Zi+1 ’\’Zi + th + 521 + ng + ZZ, + EZI + EZL + ;Zl =+ yzl 5 (11)
/ h2 " h3 n ]’l4 (4) h5 (5) h6 (6) h7 (7) hS (8)
Zi—l Q-"Z[ - th + ?Zl - ?ZL + EZZ - EZI + EZL - %Zl + ng .
Combining the result in (11), we arrive at
202, 2h* 248 2K8
Zi —2Zi+ Zipn =—27, + ——7Z® + =70 1+ Z_7® 1 o'
2! 4! 6! 8! (12)
Zin =22 ¥ i =l ks g g4 O(h™).
1—ze(s,ty) Using (12), we get %Zl@ and, we obtain
where P(s,tn) = a(s) +c(s, ty) + —4x, and
1— St — . h2 7 " "
R(s, ty) = g(s,ty) + %Zﬂ 1(s) with the boundary Zii1—2Zi+ Zin =%(Zi—1 +28Z; +Z ) +C,
Z"0) = Yi(tn), Z"(D) =VYr(ty), 0<n=<M. (13)
4 8
(7)  where .= S—OZI.@) — 3(}5’,200258) + O(h'%). Using (8), we
Now, we rewrite (6) as get
_d*Z(s) bt dz(s) | PGs,6)Z(5) = R, 2,) —eZ;y1 = — b(si1, ) Ziy — P(siv1, t) Zig1 + R(six1s tn),
ds? ds @ —eZ] =~ blsi, t)Z; — Psiy tn) Zi + Rsi, 1),

where Z(s) = Z"(s) = Z(s, t,). At each time step the local
error is defined as e, (s) := z(s, t,)) — Z"(s), 0 <n < M.

Lemma 3.1 The local error estimate in the temporal
direction satisfies the bound

lleall < Cr(AL)?,
and the global error at nth time level satisfies the bound

©)
O

IExll < C(AL).

Proof Refer from the Appendix section.

Lemma 3.2 For 0 <n < M — 1, the solution of (6)—(7),
satisfies the bound

d"Z"(s) _ B
C 1 r - ’
‘ Js < ( + & " exp ( A (s) (10)
se, 0<r<4.
Proof For the proof see [22]. O

—eZ; y =—b(si-v, ) Zi_y — P(si-1,t)Zio1 + R(si-1, t).

(14)

Next, using the non-symmetric finite difference schemes
we approximate Z; ;,Z;and Z,_; as

’ Z _Z’7

Z; = " S 00,
/ ?)Z - 4Z +Zf "

Z,, =24 2hl = _nzl v o),  (15)
’ —4Lj 4Z - 3Z_ "

Z,‘_l _ i+1 + i i—1 -f—hZi + O(l’lz)

2h

Substituting (15) into (14) and substituting the resulting
equation into (13) after simplifying, we obtain
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(s hb(si—1,t4) . hb(SiJrl’tn)) (Zi—l —27Z; +Zi+1> hb(si—1,tn) N hb(siy1,ty)
—le— — (&0 —
30 30 h? 30 30
LRt ap vaz— 7 Zio1 —2Zi+Zina
60/ w2
28b(s;, ty
* 6((S)h i 2 b(si—1,tn)
, , +————(-3Zi-1 +4Z; — Zi+1)
b(siv1,tn) P(si-1,ty) 60/
(Zi-1 —4Zi +3Ziy1) + —5—Zi1
60K 30 28b(s,, ty) (Z D
28P(5i:tn)Zi " P(5i+1,tn)Zi+1 60/ i+1 — Zi-1
% % blsit1, t) P(si-1, ta)
1 15 rqn i _ X X 1—1»tn i
= 55 RGsi1, 1)+ 28R(55 ) + Rsi1, ). t o G-l —AZi+3Zi) + —— 7 Zia
(16) 28P(si, tn) P(sit1,tn) 1
Z; Zit1 = —(R(sj—1,t
+ 30 i+ 30 i+1 30( (l 1 n)
Computing the exponential fitting factor + 28R(si; tn) + R(sit1,tn))-
In this part, we introduce the fitting factor o and for the (20)

obtained scheme of (6)—(7) at (i, n)th level. As the theory  Putting p = % and after multiplying both side by 4 and
of singular perturbation given in [9, 23], the zero order letting # — 0 which gives
asymptotic solution of the problem of the form

—eZ'(s) + b($)Z + p(s)Z(s) = q(s), s € Qs = (0,1),
ZO0)=a;, ZQ) =ay,

(17)
is given by
S(b
Z(s) ~ Zo(s) + 50 )(051 Z(0)) exp ( - / ((S) - p(S)>dS> + O(e). (18)
b(s) 0 3 b(s)
From Taylor’s series expansion for b(s) and p(s) restrict-
ing to their first terms about s = 0 and the simplified - ; 11_‘31 (Zi1 = 2Z;i + Ziy1)
P .
orm gives ) bo(tn) ( 4z 2
b(0) 60 ! i
Z(s) = Zo(s) + (g — Zp(0)) exp [ ———s |, (19) (21)
& 28b0(tn)
T (ZH-I Zi-1)
where Zj is the reducible problem solution. Considering bo (tn)
h is fairly small and solving the result in (19) at s; which t =0 h (Zz 1—4Z; +3Zi11) =0.

gives

. . Using the results in (19) and simplifying, we obtain
Z(s;) = Z(ih) = Zo(0) + (a1 — Zo(0)) exp(—b(0)ip), & pulying

g pho —b(0 bo(tn) b(0 b(0
where p = % We present an exponentially fitting factor o ;(e OF 4 ¢70 00 —9) = =222 (306”7 4 30e77O%).

of the scheme (16) (22)
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Fig. 1 Numerical solution of Example 4.1 on a, & = 2=%and b,
e=2"%

Solving for ¢ in (22), the exponential fitting factor o is
obtained as

bo(ty, b(0
_P Oz(t ) coth <p2( )>. (23)

The discrete scheme
Using the higher order finite difference scheme of (16)
and inducing the exponential fitting factor (23) for
1<i<N-—1and0 <n <M — 1, then the fully discrete
scheme is given as
At,hryn 1
L™7Z} = %(R(Si—l; tn) + 28R (si, ty) + R(Sit1,tn))s
(24)
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where

Atz — hb(si—1,tu) . hb(siy1,tn)

30 30
F A2
h2
b(S, 1 tn)
60/
28b(s;i, ty)
T oo 60/
b(si+1,tn)
+—eop G — 42 320 ) +
28P(xi:tn)zn P(si+1,tn)
30 i 30 i+l
In the explicit form, we write

)

(eo —

(=32 +4z! - Z}, )

( i+1 _Zn 1)

P(Si—l: )
—30 4in1

rrZl + izl + izl = HY,

where

oL co — hb(si-1,tn) " hb(siy1,tn)
oo 30 30
_ 3b(si-1,tn) + P(si—1,t,)
60/ 30
_ 28b(si, tn) + b(SH.l,tn)
60 60%
2 hb(si—1,ty) | hb(siy1,ts) 4b(si_1, t)
0 __ < _ i n
G (w 0 % " 6on
_ 4b(sit1,tn) N 28P(s;, t)
60K 30
1 hb(si—1,tn) | hb(sit1,tn)
+_ 1 B i1t
TR (SG 30 T 30
_ b(Si_l,t”) 1 28b(5i,tn)
60% 60K
3b(si+1,tn)  P(siy1,tn)
* 60/ + 30

)

<

1
H} :%(R(Sifl;tn) + 28R(sj, ty) + R(Si+1, tn))-
(26)

Stability and convergence analysis
In this part, for the developed scheme of (24) we take to
prove the discrete comparison principle.

Lemma 3.3 There is a comparison function v}' such that
EA”’ZL.” < E“’hv;qforl <i<N-—1landif Zj <v{ and
Zy < v, then ZI' <! forl <i <N.

Proof The discrete operator EAt’hZL.” is matrix
of size (N+1)x (N +1) with its entries for

1<i<N-1 are r;, r?, and rl.+. We observe that
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lr;| >0, |r?| > 0, |ri+| > 0 and |r?| > |+ |ri+\, giving
that the matrix is diagonally dominant. Then, it satisfies
the property of M matrix. Thus, the non-negative inverse
of the matrix exists. So, it guarantees the existence of
unique discrete solution [22, 24]. O

Lemma 3.4 (Stability result) If the solution of (24) be
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From the discrete comparison principle, we get
ﬁi,in >0,i=0,1,2,..,N. Hence, the necessary bound is
satisfied. O

Lemma 3.5 If v/ be any mesh function such that
vy = vy = 0. Then it satisfies

1
71, then it satisfies [vF] < 7 max [ LML, (28)
| LAz
}Zﬂ < — 7+ max{|Y; &), 1V &)1} Using Taylor’s series approximation, we have the
bounds
d*z"(s;)
- ——522” | <Ch|———"||,
’ ( )Z"(si)| < i
dZ"(si-1)  —Zi +4Z] — Z;i1 hdzZ”(si)) o d3Z"(s;) ’
ds 2h ds? ds3 (29)
dZ"(siy1)  3Z0, —4Zl+Z1 ., d*Z7(s) o||d3Z" (s;)
—( s L [Pe e 2
ds 2h ds ds
d 2|27 || | o d*Z"(si)
‘(ds—as)zn(si) <Ch NP 82" (s)| <C mrEa

where P(s;, t,) > ¢ > 0.

Proof letn=
rier functions z?i by z?i = IT £ Z. On the boundaries,

I LMZ I

LESZZL 4 max(Iya 6l (e 1) and set the bar-

we obtain y — 7y = -+ max{[ Y1)l [V )]} £ Y (6) = O

(A
ﬂNn—HiZN 7+max Ui @), W (BN} £ Y (80) = O
On the discretized spatlal domain s;,1 <i <N — 1, we

have

where | Z®) (s)|| = maxg, [Z (s0)] , k = 2,3,4.
In the next theorem we bound the truncation error in
space direction discretization.

Theorem 3.1 Counsider the sufficiently smooth functions
a(s), b(s,t,) and c(s,t,) of (6-7) so that Z"(s) € C*[0,1].
Then, the solution Z of (24) satisfies the bound

2
Ch (1 +¢73 exp (—ési>>,
+e g

h
(30)

LAz si) =z <

hb(si—1,tq) | hb(siy1,tn)

£At,h ﬁi,n —_

1 —2MMEZH+ N+ 2Z,

(0

b(si-1,t4)
60/
28b(si, t)
+ 60K
h(lerlx tn)
60/
P(Si—l; tn)
+ 30
_ ([ PGsi—1,tn)
B 30

J(nez

30 30

M*Z, — M xZ))

+

(M£2Z | -4+ Z) +3(IM £ Z}, )

281’(5,, tn)

(M£Z1 )+ (M +2Z"+

28P(si, )
+ 30

P(51+1x ty)
30

P(sit1,tn)

i 28P(si» tn)

> M+ LAYz

I LAz

_ [ PGsi—1,tn)
30

v rege)(

¢

i1 >

h2

(=3 £ ZL ) +4M£2Z) — (£ 2Z1)

P(sit1,tn)

(M+214)

1
+ max{l‘//l(tn)lr |‘//r(tn)}> + %(R,"il + 28R;’ +R;l+1) > 0.
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Table 1 Example 4.1, maximum absolute errors for the case t = 0.5¢

el N=M=16 32 64 128 256

270 1.3260e—03 7.4390e—04 3.9431e—04 2.0293e—04 1.0294e—04
22 1.3097e—02 7.2784e—03 3.8340e—03 1.9676e—03 9.9661e—04
24 2.7648e—02 1.5726e—02 8.3824e—03 4.3310e—03 2.2011e—03
26 3.7674e—02 1.9780e—02 1.0209e—02 5.3769e—03 2.7671e—03
-8 3.7154e—-02 2.2029e—-02 1.2040e—02 5.6488e—03 2.8289%e—-03
2-10 3.7206e—02 2.1942e—02 1.1903e—02 6.2248e—03 3.1986e—03
-2 3.7221e—-02 2.1957e—-02 1.1906e—02 6.1986e—03 3.1627e—03
2714 3.7224e—02 2.1953e—02 1.1907e—02 6.1992e—03 3.1627e—03
)16 3.7225e—02 2.1953e—02 1.1907e—02 6.1993e—03 3.1627e—03
218 3.7225e—-02 2.1953e—-02 1.1908e—02 6.1994e—03 3.1627e—03
2= 3.7225e—02 2.1953e—02 1.1908e—02 6.1994e—03 3.1627e—03
Proposed scheme

ENM 3.7225e—02 2.2029e—02 1.2040e—02 6.2248e—03 3.1986e—03
NM 0.77417 0.87156 095174 0.96059 -

Method in [14]

ENM 8.3951e—02 4.9224e—02 2.6666e—02 1.3880e—02 7.0816e—03
NM 0.77019 0.88436 0.94199 0.97086 -

Proof In the spatial direction the local truncation error
is given by

LA (Z"(s)) — Z)

= l — S(d — GSZ)Z”(si) + M

ds? 60k
dZ"(si—1) —Z!'y +4Z! =37, N hdZZ”(s,')
ds 2h ds?
28b(si,ty) (A b(sit1,tn)
0080 (L 50 ) zn(sy) 4 o)
T on (ds s )2760 = con
N dZ"(siy1) 3z, —4zZl +Z! | hdZZ" (s1)
ds 2h ds?
o o d?
< (s(la(si,tn)E coth (b(O)E) - 1)532”@,))‘ +e <d52 - 852>Z”(s,')
b(si—1,tn) (dZ”(Si—l) (—Zi"+1 +42Z! - 37! . hdZZ"(Si)))
60k ds 2h ds?
28b(si,ty) (d b(sit+1,tn)
28000 ) [ & s0) Zng. i+l tn)
* ‘ 60K (ds I R B ey
dz"(si+1) 3ZI\ —4Z!+Z] hd2Z”(Si)
ds 2h ds? ’
where o = b(s;, t,) 5 coth(b(0) %) and p = % Generally, Vp > 0, we put as
2 2
For the constants Cy ar;d C, we have ‘ C P < peoth(p) — 1< Gy P , (31)
|pcoth(p)—1|§C1,0, for p < 1. For p — oo, since 1 o+1

lim,_, o coth(p) = 1 which gives |,o coth(p) — 1| < Cip.
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Table 2 Example 4.2, maximum absolute errors for the case t = 0.5¢
el N=M=16 32 64 128 256
270 24094e—04 4.5191e—05 5.3745e—-06 4.6776e—06 34511e—-06
22 5.8848e—04 1.7058e—04 1.1039%e—-04 6.2476e—05 3.3191e—-05
24 2.1117e—03 7.2963e—04 3.0344e—04 1.3611e—04 6.4377e—05
26 4.6754e—03 2.2578e—03 8.2105e—04 2.8430e—04 1.0734e—04
-8 4.8645e—03 29411e—-03 1.5511e—-03 6.7433e—04 2.3656e—04
2-10 4.8682e—03 2.9448e—03 1.6029e—03 8.4404e—04 4.2558e—04
-2 4.8691e—03 2.9452e—03 1.6032e—03 8.4463e—04 4.3880e—04
214 4.8693e—03 2.9453e—03 1.6032e—03 8.4466e—04 4.3881e—04
216 4.8693e—03 2.9454e—03 1.6032e—03 8.4467e—04 4.3881e—04
218 4.8694e—03 2.9454e—03 1.6032e—03 8.4467e—04 4.3881e—04
2—20 4.8694e—03 2.9454e—03 1.6032e—03 8.4467e—04 4.3881e—04
ENM 4.8694e—03 2.9454e—-03 1.6032e—03 8.4467e—04 4.3881e—04
NM 0.7253 0.8775 0.9245 0.9448 -
we obtain Theorem 3.2 Let Z' be the solution of (24), then we
have the following uniform error bound
(h/e)? h?

p p
bisi, )2 coth () 2) —1] < - .
£1b(si tn) y co (()2) L= el hte

(32)
Using the bound for the difference of the derivatives in
(29) and (32), we obtain

Ch? || d?*Z"(s))
At,h 7n n i
hzZ"(s;) — Z! —=
‘c @6 -2 = |
d3z"(s;) d*z"(s;)
Ch?||—==2 Cel?||—2].
+ ds3 ‘ oo ds*

From Lemma 3.2, we obtain the bound for the derivatives

sup max |Z"(s;) — Z}'| < Ch, i =0,1,2,..N.

e€(0,1] ¢ (35)

Proof Plugging the result in Lemma 3.6 into (30), we
arrive at

2

LAMZ () -z} <

S hte (36)

2
< g, Using the

Hence, the result leads |Z"(s;) — Z| < e

sup over all ¢ € (0, 1], we get

‘.CW (Z"(s;) — Z1")

2
< Ch (1 +e72 exp (—Es,)) + Ch? {(1 +¢73 exp (—ési)) + (s +¢73 exp (—Es,))}.
h+e € € e

(33)

Evidently, e =2 < &~3, then we obtain

2 .
LAz (s) — Z| < 22 (1 + e exp(—Lsy)) thus, it
gives the desired bound. O

Lemma 3.6 For a fixed mesh and as ¢ — 0, it gives

lim max exp(=Fsi/e) =0,n=123,., (34)
e—>0 | eh

wheres; =ih, 1 <i <N —1.

Proof 'The proofis considered in [9]. O

sup max |Z"(si) — ZL"| < Ch.

g€(0,1] ¢ (37)

From the preceding theorem for the case when ¢ > /4, the
obtained scheme gives second order uniformly conver-
gent. For the case when ¢ < &, the scheme is first order
uniformly convergent in spatial direction. O

Theorem 3.3 Let z and Z are the solutions of (1) and

(24) respectively, then we have the following uniform error
bound

sup |z —Z| < C(h+ (Ap)).

e€(0,1] (38)
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Proof The proof can be done by the combination of
Lemma 3.1 and Theorem 3.2. O

Numerical results and discussions

In this part, we are considering two model examples
to validate the theoretical results obtained by the pro-
posed method. If the exact solutions of the consid-
ered examples are not known the maximum pointwise
error is estimated by using the double mesh princi-
ple. So, the maximum pointwise error is calculated by
ENM — max;, |Zf?;’M — ZEQI’ZML and the e-uniform error
is estimated by ENM — maxi,n(EfoV'M). The rate of con-
vergence is calculated by rNM = log2(ENM /E2N2M)
and the e-uniform rate of convergence is computed by
FNM — IOgZ(EN'M/EZN’ZM).

. 92 2
Example 4.1 Consider the problem 2« _ el By (L,

=8 —u@xt—1), (x1) € (0,1)x (0,2] With interval
condition u(x,t) = 0, on (x,t) € [0,1] x [—7,0] and the

boundary conditions u(0,¢) = 0 and u(1,t) =0, ¢t € (0,2].
Example 4.2 Consider the problem
P 2428 (e ) + et — 7) = 102 exp(~D)x(l — %),

(x,t) € (0,1) x (0, 2]withinterval condition #(x, ) = 0,0n
(x,¢) €[0,1] x[—7,0] and the boundary conditions
u(0,t) =0 and u(1,t) =0, t e (0,2].

For different values of ¢ and an equal number of mesh
points the maximum pointwise error, ¢ -uniform error
and e-uniform rate of convergence of the proposed
method are displayed in Tables 1 and 2. We observe from
these Tables, as ¢ — 0, the maximum pointwise error
after showing increment remains uniform. This shows
that the scheme is stable and uniformly convergent irre-
spective of the values of ¢. The g-uniform error and ¢
-uniform rate of convergence of the method are indicated
in the last rows of each Tables and it confirms that the
numerical results agree with the theoretical result.

In Fig. 1, we show the numerical solution of the scheme
for Example 4.1 for different values of . From these Fig-
ures, it can be seen that a strong boundary layer is cre-
ated on the left side of the spatial domain for small e.

In the last section of Table 1, the comparison of the
proposed scheme with the results of the existing pub-
lished work of [14] is given. As one observes, the devel-
oped scheme gives more accurate result than the scheme
in [14].
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Conclusion

We developed a numerical scheme to solve a singularly
perturbed parabolic convection-diffusion equation that
exhibits a boundary layer. The proposed scheme con-
sists of the backward-Euler method in the time direc-
tion and an exponentially fitted finite difference scheme
for the spatial direction. Using the comparison princi-
ple, the stability of the discrete scheme is examined and
analysed. The uniform convergence of the scheme is dis-
cussed theoretically. To validate the theoretical finding of
the scheme, we considered two model examples and the
numerical results are given by applying maximum point-
wise absolute error, e-uniform error and e-uniform rate
of convergence in Tables. The proposed method con-
tributes more accurate, stable and e-uniform numerical
result with linear order of convergence.

Limitations

+ The proposed scheme is not layer resolving method
since there is no sufficient number of mesh points in
the boundary layer region.

Appendix

Proof of Lemma 3.1 Since the function Z”(s) satisfies

(1 — tc(s, ty) + ALY Z™(s) — Ag(s, t,) = Z" (s)
Z(tn-1) = (1 — tc(tn) + ALLYZ(tn) — Ag(tn)
n 32Z(s)
+/t (tn—l _S) 912 ds
= (1 — tc(ty) + ALL)Z(t,)
— Ag(ty) + O(AL?).

n—1

Then e, (s) is the solution of boundary value problem of
type

(1 = 7e(s, t0) + AtL)en(s) = O(AL?).

e,(0) = 0 = e,(1) by manimum principle, we obtain
lenll < C1(AL?).

Taking the summation of all local error estimate up to
n' time step the global error estimate is given by

n
HE I =( D er| < llexll + lleall + llesll + ... + llell
=1
<C1T(At), since (M)At <T
=C(At), where C1T =C,

where Cis a constant not depends on € and A¢.
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