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RESEARCH NOTE

Variations of generalized weak contractions 
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Abstract 

Objectives:  This paper explored the fixed point results for the mappings satisfying generalized weak contractive 
conditions in a complete partially ordered b-metric space. These contractions are some variations of the work done by 
the authors (Mituku et al. in BMC Res Notes 13:537. https://​doi.​org/​10.​1186/​s13104-​020-​05354-1, 2020; Seshagiri et al. 
in BMC Res Notes 13:451. https://​doi.​org/​10.​1186/​s13104-​020-​05273-1, 2020, BMC Res Notes 14:390. https://​doi.​org/​
10.​1186/​s13104-​021-​05801-7, 2021, BMC Res Notes 14:263. https://​doi.​org/​10.​1186/​s13104-​021-​05649-x, 2021) in the 
same context. To validate the results a few examples are provided.

Result:  The aim of this work is to prove some fixed point results of the self mappings in ordered b-metric space sat-
isfying variant generalized weak contraction conditions. These results generalize some known results in the provided 
literature.
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Introduction
A b-metric space or a metric type space is one of the 
most influential generalizations of the usual metric space. 
It was first initiated by Bakhtin [11] in 1989. Later, this 
concept has been used extensively by Czerwik [16] in 
his work and also generalized the Banach contraction 
principle in a complete b-metric space. Thereafter many 
researchers improved and generalized the fixed point 
results for single and multi-valued operators in ordered 
b-metric space by considering necessary topological 
properties, the readers may refer the works from [1, 7, 8, 
10, 20–23, 34] and the references therein.

In ordered metric space, Bhaskar et al. [13] have been 
introduced first the concept of coupled fixed points for 
certain mappings and applied their results to bound-
ary value problems for obtaining the unique solutions. 

Lakshmikantham et al. [24] have been initiated the con-
cept of coupled coincidence and coupled common fixed 
point results for nonlinear contractive mappings with 
monotone property in partially ordered complete met-
ric space, which generalized and extended the results of 
[13]. Later, there has been a lot of generalizations and 
extensions for the results of coupled fixed points and 
coupled coincidence points in various ordered spaces, 
some of such works can be found from the articles [4–6, 
9, 14, 15, 17–19, 25–27]. Recently, some results on fixed 
point, coincidence point and coupled coincidence points 
for the mappings satisfying generalized weak contraction 
contractions in the context of partially ordered b-metric 
space with topological properties have been investigated 
by Belay Mituku et  al. [12], Seshagiri Rao et  al. [28, 32, 
33]. In [2] Aftab Alam et  al. have generalized some fre-
quently used metrical notations such as completeness, 
continuity, compatibility etc. to order-theoretic settings 
especially in ordered metric spaces besides introduced 
some new notions such as the ICC, DCC, MCC proper-
ties etc. and utilized these relatively weaker notions to 
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prove some coincidence theorems for Byod-Wong type 
contractions. More extended results on coincidence 
point have been investigated by Aftab Alam et al. [3] in 
ordered metric spaces whereas neither the whole space 
nor the range subspaces are required to be complete. 
Instead they used the completeness of a subspace of 
ordered metric space satisfying suitable conditions.

In the present work, we proved some fixed point results 
for the self mappings satisfying a generalized weak con-
tractive condition in a complete partially ordered b-met-
ric space. The obtained results generalized and extended 
the results of [12, 28, 32, 33] and some existing results in 
the literature. A few examples are illustrated to support 
findings.

Mathematical preliminaries
The following definitions and results are frequently used 
in the upcoming study.

Definition 1  [29, 30] An operator d:U ×U → [0,+∞) , 
where U is a non-empty set is said to be a b-metric, if it 
satisfies the properties given below

(i) d(a 1, a 2) = 0 ⇐⇒ a 1 = a 2,
(ii) d(a 1, a 2) = d(a 2, a 1),
(iii)  d(a 1, a 2) ≤ s[d(a 1, a 3)+ d(a 3, a 2)] , for all 
a 1, a 2, a 3 ∈ U and for some real number s ≥ 1.

Then (U, d, s) is known as a b-metric space. Further, 
(U, d, s,�) is a partially ordered b-metric space if (U,�) 
is a partially ordered set.

Definition 2  [31] Let (U, d, s) be a b-metric space. Then 

(1)	 a sequence { a n} is said to converge to a  , if 
lim

n→+∞
d(a n, a) = 0 and written as lim

n→+∞
a n = a .

(2)	 { a n} is said to be a Cauchy sequence in U , if 
lim

n,m→+∞
d(a n, am) = 0.

(3)	 (U, d, s) is said to be complete, if every Cauchy 
sequence in it is convergent.

Definition 3  [33] If the metric d is complete then 
(U, d, s,�) is called complete partially ordered b-metric 
space (CPOb-MS).

Definition 4  [33] Let (U,�) be a partially ordered set 
and let f ,T : U → U are two mappings. Then 

(1)	 T is called a monotone non-decreasing, if 
T(a) � T(b )  for all a, b ∈ U  with a � b .

(2)	 an element a ∈ U is called a coincidence 
(common fixed) point of T and f  , if 
f a = Ta ( f a = Ta = a).

(3)	 f  and T are called commuting, if fTa = Tf a  , 
for all a ∈ U.

(4)	 f  and T are called compatible, if any sequence 
{ a n} with limn→+∞ f a n = limn→+∞ Ta n = µ, forµ ∈ U 
then lim

n→+∞
d(Tf a n, fTa n) = 0.

(5)	 a pair of self maps ( f ,T) is called weakly compati-
ble, if fTa = Tf a  , when Ta = f a  for some a ∈ U. 

(6)	 T is called monotone f -nondecreasing, if 

(7)	 a non empty set U is called a well ordered set, if 
very two elements of it are comparable i.e., a � b  
or b � a  , for all a, b ∈ U.

Definition 5  [4, 24] Suppose (U,�) be a partially 
ordered set and let T : U×U → U and f : U → U be 
two mappings. Then 

(1)	 T has the mixed f -monotone property, if T is 
non-decreasing f -monotone in its first argument 
and is non-increasing f -monotone in its second 
argument, that is for any a, b ∈ U

 Suppose, if f  is an identity mapping then T is 
said to have the mixed monotone property.

(2)	 an element (a, b ) ∈ U×U is called a coupled 
coincidence point of T and f  , if T(a, b ) = f a  
and T(b, a) = f b  . In particular, if f  is an identity 
mapping then (a, b ) is a coupled fixed point of T.

(3)	 element a ∈ U is called a common fixed point of T 
and f  , if T(a, a) = f a = a .

(4)	 T and f  are commutative, if for all a, b ∈ U , 
T(f a, f b ) = f (Ta,Tb ).

(5)	 T and f  are said to be compatible, if 

 whenever { an} and { bn} are any two sequences in U 
such that limn→+∞T(an, bn) = limn→+∞ f an = a  

f a � f b =⇒ Ta � Tb, for any a, b ∈ U.

a 1, a 2 ∈ U, f a 1 � f a 2 =⇒ T(a 1, b ) � T(a 2, b ) and

b 1, b 2 ∈ U, f b 1 � f b 2 =⇒ T(a, b 1) � T(a, b 2).

lim
n→+∞

d(f (T(a n, b n)),T(f an, f bn)) = 0 and

lim
n→+∞

d(f (T(bn, an)),T(f bn, f an)) = 0,
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and limn→+∞T(bn, an) = limn→+∞ f bn = b  , 
for any a, b ∈ U .

The following lemma will be used in the case of 
sequences convergence in a b-metric space (U, d, s,�).

Lemma 6  [4] Let (U, d, s,�) be a b-metric space with 
s > 1 and suppose that { an} and { bn} are b-convergent to 
a  and b  respectively. Then

In particular, if a = b , then limn→+∞ d(an, bn) = 0 . 
Moreover, for each τ ∈ U, we have

Main results
Throughout the paper, we use the following distance 
functions.

A self mapping φ defined on [0,+∞) is said to be an 
altering distance function, if it satisfies the following 
conditions: 

	(i)	 φ is a continuous and non-decreasing,
	(ii)	 φ(t) = 0 ⇐⇒ t = 0.

Let us denote the set of all above altering distance func-
tions on [0,+∞) by �.

Similarly, � denote the set of all operators 
ψ : [0,+∞) → [0,+∞) satisfying the following 
conditions: 

	(i)	 ψ is lower semi-continuous,
	(ii)	 ψ(t) = 0 ⇐⇒ t = 0.

Let (U, d, s,�) be a partially ordered b-metric space with 
parameter s > 1 and let T : U → U be a mapping. Set

and

1

s2
d(a, b ) ≤ lim

n→+∞
inf d(a n, b n) ≤ lim

n→+∞

sup d(a n, b n) ≤ s
2d(a, b ).

1

s
d(a, τ ) ≤ lim

n→+∞
inf d(a n, τ )

≤ lim
n→+∞

sup d(a n, τ ) ≤ sd(a, τ ).

(1)
M(a, b ) = max

{

d(b ,Tb )
[

1+ d(a,Ta)
]

1+ d(a, b )
,
d(a,Tb )+ d(b ,Ta)

2 s
, d(a,Ta),

d(b ,Tb ), d(a, b )

}

,

Let φ ∈ � and ψ ∈ � . The mapping T is called an almost 
generalized (φ,ψ)s-contraction mapping if it satisfies the 
following condition:

for any a, b ∈ U  with a � b .
Now, we start this paper with the following fixed point 

result of a mapping satisfying an almost generalized 
(φ,ψ)s-contraction condition in partially ordered b-met-
ric space.

Theorem  7  Suppose that (U, d, s,�) be a CPO b-MS 
with parameter s > 1. Let T : U → U be an almost gen-
eralized (φ,ψ)s-contractive mapping, and be continuous, 
non-decreasing mapping with regards to �. If there exists 
certain a 0 ∈ U with a 0 � Ta 0, then T has a fixed point 
in U.

Proof  If for some a 0 ∈ U such that T a 0 = a 0 , then 
the proof is finished. Assume that a 0 ≺ T a 0 , then 
define a sequence { an} ⊂ U by an+1 = Tan , for n ≥ 0 . 
Since T is non-decreasing, then by induction we 
obtain that

If for some n0 ∈ N such that a n0 = a n0+1 then from (4), 
an0 is a fixed point of T and we have nothing to prove. 
Suppose that an  = an+1 , for all n ≥ 1 . Since a n > a n−1 
for any n ≥ 1 and then from contraction condition (3), we 
have

(2)

N(a, b) = max{
d(b,Tb)

[

1+ d(a,Ta)
]

1+ d(a, b)
, d(a, b)}.

(3)φ(sd(Ta,Tb )) ≤ φ(M(a, b ))− ψ(N(a, b )),

(4)
a 0 ≺ Ta 0 = a 1 � · · · � a n � Ta n = a n+1 � ... .

(5)

φ(d(a n, a n+1)) =φ(d(Ta n−1,Ta n))

≤ φ(s d(Ta n−1,Ta n))

≤ φ(M(a n−1, a n))

− ψ(N(a n−1, a n)).
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From (5), we get

where

If max{d(an, an+1), d(an−1, an)} = d(an, an+1) for some 
n ≥ 1 , then from (6) follows

which is a contradiction. This means that max{d(a n, a n+1),

d(a n−1, a n)} = d(a n−1, a n) for n ≥ 1 . Hence, we obtain 
from (6) that

Since, 1
s
∈ (0, 1) then the sequence { an} is a Cauchy 

sequence by [1, 7] But U is complete, then there exists 
some µ ∈ U such that an → µ .

Also from the continuity of T , we have

Therefore, µ is a fixed point of T in U . � �

By relaxing the continuity property of a map T in The-
orem 7, we have the following result.

Theorem 8  In Theorem 7, assume that U satisfies

Then a non-decreasing mapping T has a fixed point in U.

(6)
d(an, an+1) = d(Tan−1,Tan) ≤

1

s
M(an−1, an),

M(a n−1, a n) = max{
d(a n,Ta n)

[

1+ d(a n−1,Ta n−1)
]

1+ d(a n−1, a n)
,
d(a n−1,Ta n)+ d(a n,Ta n−1)

2s
,

d(a n−1,Ta n−1), d(a n,Ta n), d(a n−1, a n)}

= max{d(a n, a n+1),
d(a n−1, a n+1)+ d(a n, a n)

2s
, d(a n−1, a n)}

≤ max{d(a n, a n+1),
d(a n−1, a n)+ d(a n, a n+1)

2
, d(a n−1, a n)}

≤ max{d(a n, a n+1), d(a n−1, a n)}.

d(an, an+1) ≤
1

s
d(an, an+1),

d(an, an+1) ≤
1

s
d(an−1, an).

Tµ = T( lim
n→+∞

an) = lim
n→+∞

Tan = lim
n→+∞

an+1 = µ.

if a non-decreasing sequence { a n} → µ ∈ U, then

a n � µ, for all n ∈ N, i.e.,µ = sup a n.

Proof  From Theorem  7, we construct a non-decreas-
ing Cauchy sequence { an} in U such that an → µ ∈ U  . 
Therefore from the hypotheses, we have an � µ  for all 
n ∈ N , which implies that µ = sup an .

Now, we prove that µ is a fixed point of T , that is 
Tµ = µ . Suppose that Tµ  = µ . Let

and

Letting n → +∞ and using lim
n→+∞

a n = µ , we get

and

We know that an � µ  , for all n then from the contraction 
condition (3), we get

Letting n → +∞ and from the equations (7) and (8), we 
get

M(a n,µ) = max{
d(µ,Tµ)

[

1+ d(a n,Ta n)
]

1+ d(a n,µ)
,

d(a n,Tµ)+ d(µ,Ta n)

2 s
,

d(a n,Ta n),

d(µ,Tµ), d(a n,µ)},

N(an,µ) = max{
d(µ,Tµ)

[

1+ d(an,Tan)
]

1+ d(an,µ)
, d(an,µ)}.

(7)
lim

n→+∞
M(a n,µ) = max{d(µ,Tµ),

d(µ,Tµ)

2 s
, 0}

= d(µ,Tµ),

(8)
lim

n→+∞
N(an,µ) = max{d(µ,Tµ), 0} = d(µ,Tµ).

(9)

φ(d(an+1,Tµ)) =φ(d(Tan,Tµ)

≤ φ(sd(Tan,Tµ)

≤ φ(M(an,µ))

− ψ(N(an,µ)).



Page 5 of 13Rao and Kalyani ﻿BMC Research Notes          (2022) 15:354 	

which is a contradiction under (10). Thus, Tµ = µ , that 
is T has a fixed point µ in U . � �

Now we give the sufficient condition for the uniqueness 
of the fixed point that exists in Theorems 7 and 8.

This condition is equivalent to,

Theorem 9  In addition to the hypotheses of Theorem 7 
(or Theorem 8), condition (11) provides the uniqueness of 
the fixed point of T in U.

Proof  From Theorem  7 (or Theorem  8), we conclude 
that T has a nonempty set of fixed points. Suppose that 
a∗  and b∗  be two fixed points of T then, we claim that 
a∗ = b∗  . Suppose that a∗ �= b∗  , then from the hypothesis 
we have

Consequently, we get

where

From (13), we obtain that

(10)
φ(d(µ,Tµ)) ≤ φ(d(µ,Tµ))− ψ(d(µ,Tµ)) < φ(d(µ,Tµ)),

(11)
every pair of elements has a lower bound or an upper bound.

for every a, b ∈ U, there existsw ∈ U

which is comparable to a and b .

(12)
φ(d(Ta

∗
,Tb

∗
)) ≤ φ(s d(Ta

∗
,Tb

∗
))

≤ φ(M(a
∗
, b

∗
))

− ψ(N(a
∗
, b

∗
)).

(13)d(a ∗, b
∗
) = d(Ta

∗
,Tb

∗
) ≤

1

s
M(a ∗, b

∗
),

M(a ∗, b
∗
) = max{

d(b
∗
,Tb

∗
)
[

1+ d(a ∗,Ta ∗)
]

1+ d(a ∗, b
∗
)

,
d(a ∗,Tb

∗
)+ d(b

∗
,Ta ∗)

2 s
, d(a ∗,Ta

∗),

d(b
∗
,Tb

∗
), d(a ∗, b

∗
)}

= max{
d(b

∗
, b

∗
)[1+ d(a ∗, a ∗)]

1+ d(a ∗, b
∗
)

,
d(a ∗, b

∗
)+ d(b

∗
, a ∗)

2 s
, d(a ∗, a ∗),

d(b
∗
, b

∗
), d(a ∗, b

∗
)}

= max{0,
d(a ∗, b

∗
)

s
, d(a ∗, b

∗
)} = d(a ∗, b

∗
).

d(a ∗, b
∗
) ≤

1

s
d(a ∗, b

∗
) < d(a ∗, b

∗
),

which is a contradiction. Hence, a ∗
= b ∗  . This com-

pletes the proof. � �

Let (U, d, s,�) be a partially ordered b-metric space 
with parameter s > 1 , and let T, f : U → U be two map-
pings. Set

and

Now, we introduce the following definition.

Definition 10  Let (U, d, s,�) be a partially ordered 
b-metric space with s > 1. The mapping T : U → U is 
called a generalized (φ,ψ)s-contraction mapping with 
respect to f : U → U for some φ ∈ � and ψ ∈ �, if

for any a, b ∈ U with f a � f b , where Mf (a, b ) and 
Nf (a, b)  are given by (14) and (15) respectively.

Theorem  11  Suppose that (U, d, s,�) be a CPO b-MS 

with s > 1. Let T : U → U be an almost generalized 
(φ,ψ)s-contractive mapping with respect to f : U → U 
and, T and f  are continuous such that T is a monotone 

(14)

Mf (a, b ) = max{
d(f b ,Tb )

[

1+ d(f a,Ta)
]

1+ d(f a, f b )
,

d(f a,Tb )+ d(f b ,Ta)

2 s
,

d(f a,Ta),

d(f b ,Tb ),

d(f a, f b )},

(15)

Nf (a, b) =max

{

d(f b ,Tb)
[

1+ d(f a,Ta)
]

1+ d(f a, f b )
,

d(f a, f b )

}

.

(16)
φ(sd(Ta,Tb )) ≤ φ(Mf (a, b ))− ψ(Nf (a, b )),
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f -non decreasing mapping, compatible with f  and 
TU ⊆ fU. If for some a0 ∈ U  such that f a0 � Ta0 , 
then T and f  have a coincidence point in U.

Proof  By following the proof of Theorem 2.2 in [9], we 
construct two sequences { an} and { bn} in U such that

for which

Again from [9], we have to show that

for all n ≥ 1 and where � ∈ [0, 1
s
) . Now from (16) and 

from the equations (17) and (18), we have

where

and

Therefore from the equation (20), we get

(17)bn = Tan = f an+1 for all n ≥ 0,

(18)f a0 � f a 1 � ... � f an � f an+1 � ... .

(19)d(bn, bn+1) ≤ �d(bn−1, bn),

(20)

φ(sd(bn, bn+1)) = φ(sd(Tan,Tan+1))

≤ φ(Mf (an, an+1))− ψ(Nf (an, an+1)),

Mf (an, an+1) = max{
d(f an+1,Tan+1)

[

1+ d(f an,Tan)
]

1+ d(f an, f an+1)
,

d(f an,Tan+1)+ d(f an+1,Tan)

2 s
, d(f an,Tan),

d(f an+1,Tan+1), d(f an, f an+1)}

= max{
d(bn, bn+1)

[

1+ d(bn−1, bn)
]

1+ d(bn−1, bn)
,
d(bn−1, bn+1)+ d(bn, bn)

2 s
, d(bn−1, bn),

d(bn, bn+1), d(bn−1, bn)}

= max{d(bn, bn+1),
d(bn−1, bn)+ d(bn, bn+1)

2 s
, d(bn−1, bn)}

≤ max{d(bn, bn+1), d(bn−1, bn)},

Nf (an, an+1) = max{
d(f an+1,Tan+1)

[

1+ d(f an,Tan)
]

1+ d(f an, f an+1)
, d(f an, f an+1)}

= max{
d(bn, bn+1)

[

1+ d(bn−1, bn)
]

1+ d(bn−1, bn)
, d(bn−1, bn)}

= max{d(bn−1, bn), d(bn, bn+1)}.

(21)

φ(sd(bn, bn+1)) ≤ φ(max{d(bn−1, bn), d(bn, bn+1)})

− ψ(max{d(bn−1, bn), d(bn, bn+1)}).

If 0 < d(bn−1, bn) ≤ d(bn, bn+1) for some n ∈ N , then 
from (21) we get

or equivalently

which is a contradiction. Hence from (21) we have

Thus equation (19) holds, where � ∈ [0, 1
s
) . Therefore 

from (19) and Lemma 3.1 of [21], we conclude that 
{ bn} = {Tan} = { f an+1} is a Cauchy sequence in U and 
then converges to some µ ∈ U as U is complete such that

Thus by the compatibility of T and f  , we obtain that

(22)

φ(sd(bn, bn+1)) ≤ φ(d(bn, bn+1))

− ψ(d(bn, bn+1)) < φ(d(bn, bn+1)),

(23)s d(b n, b n+1) ≤ d(b n, b n+1),

(24)s d(b n, b n+1) ≤ d(b n−1, b n).

lim
n→+∞

Tan = lim
n→+∞

f an+1 = µ.

(25)lim
n→+∞

d(f(Tan),T(f an)) = 0,

and from the continuity of T and f  , we have

(26)
lim

n→+∞
f (Tan) = f µ, lim

n→+∞
T(f an) = Tµ.
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Further by the triangular inequality a metric d and from 
the equations (25) and (26), we get

Finally, we arrive at d(Tv, f v) = 0 as n → +∞ in (27). 
Therefore, v is a coincidence point of T and f  in U . � �

Relaxing the continuity criteria of f  and T in Theo-
rem 11, we obtain the following result.

Theorem 12  In Theorem 11, assume that U satisfies

If there exists a0 ∈ U  such that f a0 � Ta0, then the 
weakly compatible mappings T and f  have a coinci-
dence point in U. Moreover, T and f  have a common 
fixed point, if T and f  commute at their coincidence 
points.

Proof  The sequence, { bn} = {Tan} = { f an+1} is a 
Cauchy sequence from the proof of Theorem  11. Since 
fU is closed, then there exists some µ ∈ U such that

Thus from the hypotheses, we have f an � fmu for all 
n ∈ N . Now, we have to prove that µ is a coincidence 
point of T and f .

From equation (16), we have

where

(27)

1

s
d(Tµ, fmu) ≤ d(Tµ,T(f an))+ sd(T(f an),

f (Tan))+ sd(f(Tan), fmu).

for any non-decreasing sequence { f an} ⊂ Uwith lim
n→+∞

f an = f a in f U, where

f U is a closed subset ofU implies that f an � f a, f a � f (f a) for n ∈ N.

lim
n→+∞

Tan = lim
n→+∞

f an+1 = fmu.

(28)
φ(sd(Tan,Tµ)) ≤ φ(Mf (an,µ))− ψ(Nf (an,µ)),

Mf (a n,µ) = max{
d(f µ,Tµ)

[

1+ d(f a n,Ta n)
]

1+ d(f a n, f mu)
,
d(f a n,Tµ)+ d(f µ,Ta n)

2 s
,

d(f a n,Ta n), d(f µ,Tµ), d(f a n, fmu)}

→ max{d(f µ,Tµ),
d(f µ,Tµ)

2 s
, 0, d(f µ,Tµ), 0}

= d(f µ,Tµ) as n → +∞,

and

Therefore the equation (28) becomes

Consequently, we get

Further by triangular inequality of a metric d, we have

thus (29) and (30) lead to contradiction, if fmu  = Tµ . 
Hence, fmu = Tµ . Let fmu = Tµ = ρ , that is T and 
f  are commute at ρ , then Tρ = T(fµ) = f (Tµ) = f rho . 

Since fmu = f (fµ) = f rho , then by equation (28) with 
fmu = Tµ and f rho = Tρ , we get

or equivalently,

Nf (a n,µ) = max{
d(f µ,Tµ)

[

1+ d(f a n,Ta n)
]

1+ d(f a n, fmu)
,

d(f a n, fmu)}

→ max{d(f µ,Tµ), 0}

= d(f µ,Tµ) as n → +∞.

φ(s lim
n→+∞

d(Ta n,Tµ)) ≤ φ(d(f µ,Tµ))

− ψ(d(f µ,Tµ)) < φ(d(f µ,Tµ)).

(29)lim
n→+∞

d(Tan,Ta) <
1

s
d(fµ,Tµ).

(30)
1

s
d(fµ,Tµ) ≤ d(fµ,Tan)+ d(Tan,Tµ),

φ(sd(Tµ,Tρ)) ≤ φ(Mf (µ, ρ))

− ψ(Nf (µ, ρ)) < φ(d(Tµ,Tρ)),

sd(Tµ,Tρ) ≤ d(Tµ,Tρ),
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which is a contradiction, if Tµ  = Tρ . Thus, 
Tµ = Tρ = ρ . Hence, Tµ = f rho = ρ , that is ρ is a 
common fixed point of T and f  . � �

Definition 13  Let (U, d, s,�) be a CPOb-MS with 
s > 1 , φ ∈ � and ψ ∈ � . A mapping T : U×U → U is 
said to be an almost generalized (φ,ψ)s-contractive map-
ping with respect to f : U → U such that

for all a, b, ρ, τ ∈ U with f a � f rho and f b � f tau , 
k > 2 where

and

Theorem  14  Let (U, d, s,�) be a CPOb-MS with s > 1

. Suppose that T : U×U → U be an almost generalized 
(φ,ψ)s-contractive mapping with respect to f : U → U 
and, T and f  are continuous functions such that T 
has the mixed f -monotone property and commutes 

with f . Also assume that T(U×U) ⊆ f (U). Then T 
and f  have a coupled coincidence point in U, if there 
exists (a0, b0) ∈ U×U such that f a0 � T(a0, b0) and 
f b0 � T(b0, a0).

Proof  From the hypotheses and following the proof of 
Theorem 2.2 of [9], we construct two sequences { an} and 
{ bn} in U such that

In particular, { f an} is a non-decreasing and { f bn} is a 
non-increasing sequences in U . Now from (31) by replac-
ing a = an, b = bn, ρ = an+1, τ = bn+1 , we get

(31)
φ(s

kd(T(a, b ),T(ρ, τ)) ≤ φ(Mf (a, b, ρ, τ))

− ψ(Nf (a, b, ρ, τ)),

Mf (a, b, ρ, τ) = max{
d(f ρ,T(ρ, τ))

[

1+ d(f a,T(a, b ))

]

1+ d(f a, f ρ)
,

d(f a,T(ρ, τ))+ d(f ρ,T(a, b ))

2 s
,

d(f a,T(a, b)), d(f ρ,T(ρ, τ)), d(f a, f ρ)},

Nf (a, b, ρ, τ) =max

{

d(f ρ,T(ρ, τ))
[

1+ d(f a,T(a, b ))

]

1+ d(f a, f ρ)
,

d(f a, f ρ)

}

.

f an+1 = T(an, bn), f bn+1 = T(bn, an), for all n ≥ 0.

where

and

Therefore from (32), we have

Similarly by taking a = bn+1, b = an+1, ρ = an, τ = an in 
(31), we get

From the fact that max{φ(c 1),φ(c2)} = φ{max{c 1, c2}} 
for all c 1, c2 ∈ [0,+∞) . Then combining (33) and (34), we 
get

(32)

φ(s
kd(f an+1, f an+2)) = φ(s

kd(T(an, bn),

T(an+1, bn+1)))

≤ φ(Mf (an, bn, an+1, bn+1))

− ψ(Nf (an, bn, an+1, bn+1)),

Mf (an, bn, an+1, bn+1) ≤ max{d(f an, f an+1),

d(f an+1, f an+2)}

Nf (an, bn, an+1, bn+1) =max{d(f an, f an+1),

d(f an+1, f an+2)}.

(33)

φ(s
kd(f an+1, f an+2)) ≤ φ(max{d(f an, f an+1),

d(f an+1, f an+2)})

− ψ(max{d(f an, f an+1),

d(f an+1, f an+2)}).

(34)

φ(s
kd(f bn+1, f bn+2)) ≤ φ(max{d(f bn, f bn+1),

d(f bn+1, f bn+2)})

− ψ(max{d(f bn, f bn+1),

d(f bn+1, f bn+2)}).

(35)φ(s
k
δ n) ≤ φ(max{d(f a n, f a n+1), d(f a n+1, f a n+2), d(f b n, f b n+1), d(f b n+1, f b n+2)})

− ψ(max{d(f a n, f a n+1), d(f a n+1, f a n+2), d(f b n, f b n+1), d(f b n+1, f b n+2)})

where

Let us denote,

Hence from the equations (33)-(36), we obtain that

(36)
δn = max{d(f an+1, f an+2), d(f bn+1, f bn+2)}.

(37)

�n =max

{

d( f an, f an+1),

d( f an+1, f an+2),

d( f bn, f bn+1), d( f bn+1, f bn+2)

}

.
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Next, we prove that

for all n ≥ 1 and where � =
1
sk
∈ [0, 1).

Suppose that if �n = δn then from (38), we get skδn ≤ δn 
which leads to δn = 0 as s > 1 and hence (39) holds. If 
�n = max{d(f an, f an+1), d(f bn, f bn+1)} , i.e., �n = δn−1 
then (38) follows (39).

Now from (38), we obtain that δn ≤ �
n
δ0 and hence,

Therefore from Lemma 3.1 of [21], the sequences { f an} 
and { f bn} are Cauchy sequences in U . Thus, from Theo-
rem 2.2 of [5], we conclude that T and f  have a coinci-
dence point in U . �

Corollary 15  Let (U, d, s,�) be a CPOb-MS with s > 1, 
and T : U×U → U be a continuous mapping such that 
T has a mixed monotone property. Suppose there exists 
φ ∈ � and ψ ∈ � such that

for all a, b, ρ, τ ∈ U with a � ρ and b � τ , k > 2 where

and

Then T has a coupled fixed point in U, if there 
exists (a0, b0) ∈ U×U such that a0 � T(a0, b0) and 
b0 � T(b0, a0).

Proof  Set f = IU in Theorem  14. � �

Corollary 16  Let (U, d, s,�) be a CPOb-MS with s > 1, 
and T : U×U → U be a continuous mapping such that 
T has a mixed monotone property. Suppose there exists 
ψ ∈ � such that

(38)s
k
δn ≤ �n.

(39)δn ≤ �δn−1,

d(f an+1, f an+2) ≤ �
n
δ0 and d(f bn+1, f bn+2) ≤ �

n
δ0.

φ(s
kd(T(a, b),T(ρ, τ))) ≤ φ(Mf (a, b, ρ, τ))

− ψ(Nf (a, b, ρ, τ)),

Mf (a, b, ρ, τ ) = max{
d(ρ,T(ρ, τ))

[

1+ d(a,T(a, b ))

]

1+ d(a, ρ)
,
d(a,T(ρ, τ))+ d(ρ,T(a, b ))

2 s
,

d(a,T(a, b )), d(ρ,T(ρ, τ)), d(a, ρ)},

Nf (a, b, ρ, τ ) =max{
d(ρ,T(ρ, τ))

[

1+ d(a,T(a, b ))

]

1+ d(a, ρ)
,

d(a, ρ)}.

for all a, b, ρ, τ ∈ P with a � ρ and b � τ , k > 2 where

and

If there exists (a0, b0) ∈ U×U  such that a0 � T(a0, b0)  
and b0 � T(b0, a0) , then T has a coupled fixed point in 
U.

Theorem  17  In addition to Theorem  14, if for all 
(a, b), (r, s) ∈ U×U, there exists (c∗, d∗) ∈ U×U 
such that (T(c∗, d∗),T(d∗, c∗)) is comparable to 
(T(a, b ),T(b, a)) and to (T(r, s),T(s, r)), then T and f  
have a unique coupled common fixed point in U×U.

Proof  From Theorem  14, we know that there exists at 

least one coupled coincidence point in U for T and f  . 
Assume that (a, b)  and (r, s) are two coupled coincidence 
points of T and f  , i.e., T(a, b) = f a  , T(b, a, ) = f b  
and T(r, s) = f r , T(s, r) = f s . Now, we have to prove 
that f a = f r and f b = f s.

From the hypotheses, there exists (c∗, d∗) ∈ U×U 
such that (T(c∗, d∗),T(d∗, c∗)) is comparable to 
(T(a, b),T(b, a)) and to (T(r, s),T(s, r)) . Suppose that

Let c∗0 = c∗ and d∗0 = d∗ and then choose 
(c∗1, d

∗

1) ∈ U×U as

d(T(a, b ),T(ρ, τ)) ≤
1

sk
Mf (a, b, ρ, τ )

−
1

sk
ψ(Nf (a, b, ρ, τ)),

Mf (a, b, ρ, τ ) = max{
d(ρ,T(ρ, τ))

[

1+ d(a,T(a, b))
]

1+ d(a, ρ)
,

d(a,T(ρ, τ))+ d(ρ,T(a, b))

2 s
,

d(a,T(a, b)),

d(ρ,T(ρ, τ)), d(a, ρ)},

Nf (a, b, ρ, τ ) =max{
d(ρ,T(ρ, τ))

[

1+ d(a,T(a, b))
]

1+ d(a, ρ)
,

d(a, ρ)}.

(T(a, b),T(b, a))

≤ (T(c∗, d∗),T(d∗, c∗)) and (T(r, s),T(s, r))

≤ (T(c∗, d∗),T(d∗, c∗)).
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By repeating the same procedure above, we can obtain 
two sequences { f c∗n} and { f d∗n} in U such that

Similarly, define the sequences { f an} , { f bn} and { f rn} , 
{ f sn} as above in U by setting a0 = a  , b0 = b  and r0 = r , 
s0 = s . Further, we have that

Since, (T(a, b ),T(b, a)) = (f a, f b ) = (f a 1, f b 1) 
is comparable to 
(T(c∗, d∗),T(d∗, c∗)) = (f c∗, f d∗) = (f c∗

1
, f d∗

1
) and 

hence we get (f a 1, f b 1) ≤ (f c∗
1
, f d∗

1
) . Thus, by induc-

tion we obtain that

Therefore from (31), we have

where

and

Thus from (40),

As by the similar process, we can prove that

f c∗1 = T(c∗0, d
∗

0 ), f d∗1 = T(d∗0 , c
∗

0) (n ≥ 1).

f c∗n+1 = T(c∗n, d
∗

n), f d∗n+1 = T(d∗n , c
∗

n) (n ≥ 0).

f an → T(a, b), f bn → T(b, a), f rn → T(r, s),

f sn → T(s, r) (n ≥ 1).

(f a n, f b n) ≤ (f c∗n, f d
∗

n) (n ≥ 0).

(40)

φ(d(f a, f c∗n+1)) ≤ φ(s
3d(f a, f c∗n+1))

= φ(d(T(a, b ),T(c∗n, d
∗

n)))

≤ φ(Mf (a, b, c
∗

n, d
∗

n))

− ψ(Nf (a, b, c
∗

n, d
∗

n)),

Mf (a, b, c
∗

n, d
∗

n) = max{
d(f c∗n,T(c∗n, d

∗
n))

[

1+ d(f a,T(a, b ))
]

1+ d(f a, f c∗n)
,

d(f a,T(c∗n, d
∗
n))+ d(f c∗n,T(a, b ))

2 s
,

d(f a,T(a, b )), d(f c∗n,T(c∗n, d
∗

n)), d(f a, f c
∗

n)}

= max{0,
d(f a, f c∗n)

s
, 0, 0, d(f a, f c∗n)}

= d(f a, f c∗n)

Nf (a, b, c
∗

n, d
∗

n) = max{
d(f c∗n,T(c∗n, d

∗
n))

[

1+ d(f a,T(a, b))
]

1+ d(f a, f c∗n)
, d(f a, f c∗n)}

= d(f a, f c∗n).

(41)
φ(d(f a, f c∗n+1)) ≤ φ(d(f a, f c∗n))− ψ(d(f a, f c∗n)).

From (41) and (42), we have

Hence by the property of φ , we get

which shows that max{d(f a, f c∗n), d(f b, f d
∗
n)} is a 

decreasing sequence and by a result there exists γ ≥ 0 
such that

From (43) taking upper limit as n → +∞ , we get

from which we get ψ(γ ) = 0 , implies that γ = 0 . Thus,

Consequently, we get

By similar argument, we get

Therefore from (44) and (45), we get f a = f r and 
f b = f s . Science f a = T(a, b ) and f b = T(b, a) , 

then by the commutativity of T and f  , we have

(42)
φ(d(f b, f d∗n+1)) ≤ φ(d(f b, f d∗n))− ψ(d(f b, f d∗n)).

(43)

φ(max{d(f a, f c∗n+1), d(f b, f d
∗

n+1)})

≤ φ(max{d(f a, f c∗n), d(f b, f d
∗

n)})

− ψ(max{d(f a, f c∗n), d(f b, f d
∗

n)})

< φ(max{d(f a, f c∗n), d(f b, f d
∗

n)}).

max{d(f a, f c∗n+1), d(f b, f d
∗

n+1)}

< max{d(f a, f c∗n), d(f b, f d
∗

n)},

lim
n→+∞

max{d(f a, f c∗n), d(f b, f d
∗

n)} = γ .

φ(γ ) ≤ φ(γ )− ψ(γ ),

lim
n→+∞

max{d(f a, f c∗n), d(f b , f d∗n)} = 0.

(44)
lim

n→+∞
d(f a, f c∗n) = 0 and lim

n→+∞
d(f b , f d∗n) = 0.

(45)
lim

n→+∞
d(f r, f c∗n) = 0 and lim

n→+∞
d(f s, f d∗n) = 0.

Let f a = a∗ and f b = b∗ then (46) becomes
(46)

f (f a) = f (T(a, b )) = T(f a, f b ) and f (f b )

= f (T(b, a)) = T(f b, f a).
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which shows that (a∗, b∗) is a coupled coincidence point 
of T and f  . It follows that f (a∗) = f r and f (b∗) = f s 
that is f (a∗) = a∗ and f (b∗) = b∗ . Thus from (47), we 
get a∗ = f (a∗) = T(a∗, b∗) and b∗ = f (b∗) = T(b∗, a∗) . 
Therefore, (a∗, b∗) is a coupled common fixed point of T 
and f .

For the uniqueness let (u∗, v∗) be another coupled 
common fixed point of T and f  , then we have 
u∗ = f u∗ = T(u∗, v∗) and v∗ = f v∗ = T(v∗,u∗) . 
Since (u∗, v∗) is a coupled common fixed point of 
T and f  , then we obtain that f u∗ = f a = a∗ and 
f v∗ = f b = b∗ . Thus, u∗ = f u∗ = f a∗ = a∗ and 
v∗ = f v∗ = f b∗ = b∗ . Hence the result. � �

Theorem  18  In addition to the hypotheses of Theo-
rem 17, if f a0 and f b0  are comparable, then T and f  
have a unique common fixed point in U.

Proof  From Theorem 17, T and f  have a unique cou-
pled common fixed point (a, b) ∈ U . Now, it is enough to 
prove that a = b  . From the hypotheses, we have f a0 and 
f b0  are comparable then we assume that f a0 � f b0  . 

Hence by induction we get f an � f bn for all n ≥ 0 , 
where { f an} and { f bn} are from Theorem 14.

Now by use of Lemma 6, we get

which is a contradiction. Thus, a = b  , i.e., T and f  have 
a common fixed point in U . � �

Corollary 19  Suppose (U, d, s,�) be a CPO b-MS with 
parameter s > 1. Let T : U → U be a continuous, non-
decreasing map with regards to � such that there exists 
a0 ∈ U with a0 � Ta0. Suppose that

where M(a, b)  and the conditions upon φ,ψ are same as 
in Theorem 7. Then T has a fixed point in U.

(47)f (a∗) = T(a∗, b∗) and f (b∗) = T(b∗, a∗),

φ(s
k−2d(a , b )) = φ(s

k 1

s2
d(a, b )) ≤ lim

n→+∞
supφ(skd(an+1, b n+1))

= lim
n→+∞

supφ(skd(T(an, b n),T(b n, an)))

≤ lim
n→+∞

supφ(Mf (an, b n, b n, an))− lim
n→+∞

inf ψ(Nf (an, b n, b n, an))

≤ φ(d(a, b ))− lim
n→+∞

inf ψ(Nf (an, bn, bn, an))

< φ(d(a, b )),

(48)φ(sd(Ta,Tb)) ≤ φ(M(a, b))− ψ(M(a, b )),

Proof  Set N(a, b ) = M(a, b ) in a contraction condi-
tion (3) and apply Theorem 7, we have the required proof.
�  �

Remark 20 

	(i).	 The fixed point and its uniqueness exists for a non-
decreasing mapping T in U satisfying the contrac-
tion condition (48) by following Theorems  8 &  9 
under the same hypothesis.

	(ii).	 One can obtains the coincidence point, coupled 
coincidence point and its uniqueness of the map-
pings T and f  in U by following Theorems  11 
& 12 and Theorems 14, 17 & 18 from the contrac-
tion condition (48) by taking M(a, b ) , Mf (a, b ) , 
Mf (a, b, ρ, τ ) and the conditions upon φ,ψ are 
same as above defined.

Corollary 21  Suppose that (U, d, s,�) be a CPOb-MS 
with s > 1. Let T : U → U be a continuous, non-decreas-
ing mapping with regards to �. If there exists k ∈ [0, 1) 
and for any a, b ∈ U with a � b  such that

If there exists a0 ∈ U with a0 � Ta0, then T has a fixed 
point in U.

Proof  Set φ(t) = t and ψ(t) = (1− k)t , for all 
t ∈ (0,+∞) in Corollary 19. � �

Note 1  Following Theorem 8, a fixed point exists for a 
non-decreasing mapping T in Corollary 21.

We give the following examples of the results obtained 
in different cases such as continuity and discontinuity of 
a metric d in a space U.

Example 22  Define a metric d : U×U → U as below 
and ≤ is an usual order on U , where U = {1, 2, 3, 4, 5, 6}

(49)

d(Ta,Tb) ≤
k

s
max{

d(b,Tb)
[

1+ d(a,Ta)
]

1+ d(a, b)
,

d(a,Tb)+ d(b,Ta)

2 s
,

d(a,Ta), d(b,Tb), d(a, b)}.
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Define a map T : U → U by T1 = T2 = T3 =

T4 = T5 = 1,T6 = 2 and let φ(t) = t
2 , ψ(t) = t

4 for 
t ∈ [0,+∞) . Then T has a fixed point in U.

Proof  It is obvious that for s = 2 , (U, d, s,�) is a CPOb-
MS. Consider the possible cases for a  , b  in U:

Case 1. Suppose a, b ∈ {1, 2, 3, 4, 5} , a < b  then 
d(Ta,Tb ) = d(1, 1) = 0 . Hence,

Case 2. Suppose that a ∈ {1, 2, 3, 4, 5} and b = 6 , 
then d(Ta,Tb ) = d(1, 2) = 3 , M(6, 5) = 20 and 
M(a, 6) = 12 , for a ∈ {1, 2, 3, 4} . Therefore, we have the 
following inequality,

Thus, condition (48) of Corollary 19 holds. Furthermore, 
the remaining assumptions in Corollary  19 are fulfilled. 
Hence, T has a fixed point in U as Corollary 19 is appro-
priate to T,φ,ψ and (U, d, s,�) . � �

Example 23  A metric d : U×U → U , where 
U = {0, 1, 12 ,

1
3 ,

1
4 , ...

1
n , ...} with usual order ≤ is as follows

A map T : U → U be such that T0 = 0,T1
n =

1
12n for all 

n ≥ 1 and let φ(t) = t , ψ(t) = 4t
5  for t ∈ [0,+∞) . Then, 

T has a fixed point in U.

Proof  It is obvious that for s = 12
5  , (U, d, s,�) is a CPOb-

MS and also by definition, d is discontinuous b-metric 
space. Now for a, b ∈ U with a < b  , we have the follow-
ing cases:

Case 1. If a = 0 and b =
1
n , n ≥ 1 , then 

d(Ta,Tb ) = d(0, 1
12n ) =

1

12n and M(a, b ) = 1
n or 

M(a, b ) = {1, 2} . Therefore, we have

Case 2. If a = 1
m and b =

1
n with m > n ≥ 1 , then

d(a, b ) = d(b, a) = 0, if a, b = 1, 2, 3, 4, 5, 6 and a = b,

d(a, b ) = d(b, a) = 3, if a, b = 1, 2, 3, 4, 5 and a �= b,

d(a, b ) = d(b, a) = 12, if a = 1, 2, 3, 4 and b = 6,

d(a, b ) = d(b, a) = 20, if a = 5 and b = 6.

φ(2d(Ta,Tb )) = 0 ≤ φ(M(a, b ))− ψ(M(a, b )).

φ(2d(Ta,Tb )) ≤
M(a, b )

4
= φ(M(a, b ))− ψ(M(a, b )).

d(a, b ) =















0 , if a = b

1 , if a �= b ∈ {0, 1}

| a− b | , if a, b ∈ {0,
1

2n ,
1
2m : n �= m ≥ 1}

2 , otherwise.

φ

(

12

5
d(Ta,Tb )

)

≤
M(a, b )

5
= φ(M(a, b ))− ψ(M(a, b )).

Therefore,

Hence, condition (48) of Corollary  19 and remaining 
assumptions are satisfied. Thus, T has a fixed point in U . 
� �

Example 24  Let U = C[a, b] be the set of all continu-
ous functions. Let us define a b-metric d on U by

for all θ1, θ2 ∈ U with partial order � defined by θ1 � θ2 
if a ≤ θ1(t) ≤ θ2(t) ≤ b , for all t ∈ [a, b] , 0 ≤ a < b . Let 
T : U → U be a mapping defined by Tθ =

θ

5 , θ ∈ U and 
the two altering distance functions by φ(t) = t , ψ(t) = t

3 , 
for any t ∈ [0,+∞] . Then T has a unique fixed point in 
U.

Proof  From the hypotheses, it is clear that (U, d, s,�) 
is a CPOb-MS with parameter s = 2 and fulfill all condi-
tions of Corollary 19 and Remark 20. Furthermore for any 
θ1, θ2 ∈ U , the function min(θ1, θ2)(t) = min{θ1(t), θ2(t)} 
is also continuous and the conditions of Corollary 19 and 
Remark 20 are satisfied. Hence, T has a unique fixed 
point θ = 0 in U .�  �

Limitations
The existence and uniqueness of a fixed point for a self 
mapping satisfying a generalized weak contraction 
in CPOb-MS is proved. Furthermore, the results are 
extended for obtaining the coincidence point and cou-
pled coincidence point for two mappings in the same 
context. The results can be further extended

• to triple and quadruple mappings for fixed points 
and
• to discuss the results in various spaces with neces-
sary topological properties.
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