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Abstract 

Objective  Because of the need to extensively study the synergistic activity of metallic nanoparticles, this study aimed 
to evaluate the antibacterial activity of mixed metallic nanoparticles, made by differing the weight mixing ratio. We 
prepared multi-metallic nanorods (NRs) by chemical reduction method, with different ratio combinations of silver Ag 
and copper Cu, two main batches of nanorods were produced: bimetallic mix made only of Ag–Cu, and trimetallic 
mix made of Ag–Cu and lithium Li, AgCu NRs and AgCuLi NRs respectively. NaOH was used in the synthesis for the 
co-reduction of salt precursors. Ag percentage was varied from 10 to 90% in bimetallic NRs but in the trimetallic NRs, 
which has a fixed ratio of Li (10%), the percentage of silver precursor was from 10 to 80%. The presence of metals 
was confirmed by energy dispersive X-rays (EDX) analysis. Ion release was detected using inductively coupled plasma 
spectrometer (ICP) and the values showed that NRs are effective source for ion supply for up to 24 h. The antibacterial 
activity of metallic NRs was tested against Staphylococcus aureus using Bauer Kirby method.

Results  The bi-synergistic mix of Ag and Cu generates more ions than the tri-synergistic mix of Ag, Cu, and Li. Nev-
ertheless, the later was more efficient and showed higher antibacterial activity at lower concentrations. This effect is 
less likely to be attributed to modality of ion release. Indeed, the results of our work suggest that besides ion release, 
alloyed nanorods themselves are toxic and the trimetallic mix exhibited more biocidal activity, specifically at Ag salt 
concentrations of 30%, 50% and 70%.

Keywords  AgCu NRs, AgCuLi NRs, Bimetallic NRs, Trimetallic NRs, Antibacterial activity

Introduction
Silver nanorods have medical usage as antimicro-
bial agents for wound and injuries treatment as well as 
against drug resistance infection [1–3]. Drug delivery 
and anticancer therapy are other developing applications 
of silver nanorods [4–6] their extensive use in therapeu-
tic approaches is due to their genuine physiochemical 
properties [7]. Similarly, copper nanorods have received 
considerable attention for use in antimicrobial applica-
tions [8, 9]. Hydrothermal, sol gel synthesis, chemical 
reduction and other bottom-up synthesis approaches 
generate nanoscale metal materials that differ in size and 
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morphology, however scientists routinely use the term 
nanorods to include all the other forms and shapes, such 
as nanospheres and nanorods.

Antibacterial reactivity of nanorods depends on shape 
and size along other properties [10, 11]. A wide anti-
bacterial spectrum of silver nanorods was reported in 
literature, where nanorods inhibited the growth of both 
gram-positive and gram-negative bacteria [1, 6]. A com-
parative study showed that silver nanorods are more 
reactive biocides against S. aureus and other tested bacte-
ria than copper nanorods [12]. The antibacterial behavior 
of metallic nanorods is complex and is stemmed from the 
combined effect of ions and nanorods [13]. It was demon-
strated that biocidal activity of metallic nanorods results 
from the interaction of nanorods themselves with cellular 
and subcellular structures [11]. Silver nanorods exposed 
bacterial cells revealed breakage in DNA and higher lev-
els of oxidative molecules [7]. Additional research needs 
to be done to ascertain what type of entity is more influ-
ential in antibacterial activity; nanorods or their corre-
sponding ions. One of the important antibacterial assays, 
that is widely used, is the disk diffusion assay, known as 
the Kirby-Bauer test [1, 9].

While there is a growing knowledge of the antibacte-
rial activity of monometallic nanorods, little informa-
tion is available of synergistic antibacterial effect of 
multi element nanorods. CuPd, AuPd, FePd, and AgCu 
are examples of multi metallic nanorods having unique, 
magnetic, optical, physicochemical and antibacterial 
properties, compared with pure monometallic nanorods 
[14–17]. Lithium is not commonly used in the fabrication 
of nanorods although its antibacterial properties have 
been reported recently [18].

Bimetallic alloys made of silver copper, AgCu nanopar-
ticles, AgCu NPs, are commonly synthesized by chemical 
method using different reducing agents and salt precur-
sors [19]. Additionally, varying elemental concentration 
of silver copper, AgCu, NPs is another parameter to be 
used to enhance their antibacterial effectiveness. AgCu 
nanorods made of equal concentration ratios of metal 
precursors exhibited complete inhibition of Escherichia 
coli (E. coli) growth [15].

In this work chemically produced rod-shaped metallic 
nanorods were made with two and three metal combina-
tions and at different initial concentration ratios. The rel-
ative concentration ratios of precursors of Ag and Cu was 
changed to prepare different suspensions of (AgCu NRs). 
Likewise, Ag, Cu salt ratio percentage was also changed 
for the preparation trimetallic NRs (AgCuLi NRs), but 
Li salt percentage was fixed. The aim of this study is to 
screen the different synergetic nanorods to find out the 
efficient ratio combination of AgCu to be used as antimi-
crobial agents.

Methods
Chemical reduction synthesis of silver and copper 
nanorods
All the chemicals used in this work were analytical 
grade. Copper sulfate pentahydrate (CuSO4.5H2O), Sil-
ver nitrate (AgNO3), Lithium sulfate (Li2SO4) were the 
metal salt precursors used to produce metallic nanorods, 
NRs. Only the first two salts were used to produce bime-
tallic NRs. Colloidal suspensions of heterogeneous 
metallic nanorods were produced in a typical single step 
reduction according to a method of Wang et  al., 2019 
[20], with slight modification. The weighed amounts of 
CuSO4.5H2O and AgNO3 were dissolved in 50 ml d. H2O, 
in a flask, and stirred with a magnetic stirrer for 10 min. 
For the preparation of trimetallic mixture a concentra-
tion of 0.03  mol/l of Li2SO4 was used for the synthesis 
of all lithium-based NRs. Each metal was represented by 
weight percentage. Calculation was done as follows: the 
weight of metal in the sample divided by the weight of all 
metals in the sample multiplied by 100.

For preparing NRs made of silver copper and lithium 
(AgCuLi NRs), concentration of Li precursor is summed 
up to the total concentration of metal precursors. 10% 
and 80% were the lowest and highest silver precursor 
percentage in Lithium based NRs (AgCuLi NRs). While 
for lithium free NRs (AgCu NRs), 10% and 90% were the 
lowest and the highest silver percentage respectively. 
(Different nanorods samples are designated NP1, NP2, 
NP3…, NP8).

After dissolving metal salts, the solution was trans-
ferred to a spherical flask mantle followed by one time 
addition of a freshly prepared solution of sodium hydrox-
ide (NaOH) at a 4 M concentration. This solution has a 
dual role: for the dissociation of silver sulphate solid at 
the beginning of synthesis reaction as well as to act as a 
reducing agent for nanorods synthesis. The solution was 
stirred rapidly using mechanical stirrer for 10  min. The 
mixture was then heated, using heating mantle, to 100 °C 
for 1  h with permanent stirring. (Additional file  1: Fig. 
S1). Metal ions in solution reduced simultaneously into 
metal atoms, which mediate nucleation and nanorods 
growth. These two stages lead to the formation of metal 
nanorods. Formation of nanorods is indicated by a color 
change of mixture into dark brown. After finishing the 
reduction reaction and then cooling to room tempera-
ture, the metal precipitate was collected and washed 
with distilled water (5 times). Probe sonication was 
done for one hr. Finally, the collected pellet was dried at 
room temperature to get nano powder (the powder was 
stored in dark at ambient condition). Stock suspension 
was prepared by dispersing nano powder in d. H2O, then 
vertexing for 5  min at room temperature, followed by 
sonication for up to 5 min. Stock suspension was diluted 
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using d. H2O into the following concentrations: 1, 5, 10, 
20  µg/ml and higher concentrations at 1 and 5  mg/ml 
were prepared as well. NRs stock and diluted suspensions 
were freshly prepared in 50 ml conical centrifuge tubes. 
All tubes were wrapped with aluminum foil, to prevent 
light effect.

Characterization of metallic NRs using scanning electron 
microscope/energy dispersive X ray, SEM/EDX
Metallic nanorods were characterized using scanning 
electron microscope (SEM) with energy dispersive X 
rays (EDX). The images were obtained by SEM (Hitachi 
S-4800, Hitachi Ltd Tokyo Japan). For SEM imaging, 
nonpowered was further dried in oven at 50  °C, then 
samples were mounted on stubs using conductive double 
sided carbon tape. SEM analysis was done at 15 kV accel-
eration voltage and approximately at 8 mm working dis-
tance. The energy dispersive x rays (EDX) technique was 
used for the identification and quantification of the ele-
mental percentage in nano powder, as well as to compare 
the relative percent of metals in different NRs samples.

Antibacterial activity of metallic nanorods 
against the growth of Staphylococcus aureus
The following concentrations of NRs were prepared 
to be tested against bacteria; 1, 5, 10, 20, 50, 100 µg/ml 
and 1 and 5 mg/ml. Kirby- Bauer method (disk diffusion 
method) was used to test the susceptibility of Staphylo-
coccus aureus to the produced NRs. Filter papers (What-
man No.1 filter paper) were cut into disks and sterilized 
by autoclaving. Müller–Hinton agar media (HiMedia 
Laboratories), were inoculated with bacterial broth (S. 
aureus). Prepared disks were immersed with shaking in 
NRs suspension for 1–2 min at room temperature, then 
they were pressed gently down onto the agar. Plates were 
allowed to dry for 5–15 min at room temperature. Disks 
impregnated with gentamicin was used as the positive 
control and applied at various concentrations at 10, 50 
and 100  µg/m, and at higher concentrations as well (1 
and 5  mg/ml). Plates were incubated at 37  °C for 24  h. 
The diameter (mm) of the zone of inhibition was meas-
ured in millimeter and recorded for each disk.

Measurements of silver and copper released 
from nanorods using ICP
Ion release was measured using ICP-OES (Inductively 
Coupled plasma- Optical Emission Spectrometer, Var-
ian 710-ES). For that purpose, nano metallic suspensions 
were freshly prepared with different concentrations; 
1, 5, 10 and 20  µg/m. The first reading was taken after 
2  h, NRs suspensions were kept at ambient conditions 
and measured again after 24  h. Before each ICP read-
ing, centrifugation was done at 5600 ×g for 20  min. 

After centrifugation, nanorods were concentrated at the 
bottom of the tube. Supernatant solution was carefully 
removed using a syringe for ICP analysis. Working cali-
bration standards for each element were prepared and 
used every time prior to sample measurement. A sche-
matic diagram of the study methodology is shown in 
Fig. 1

Statistical analysis of ions release
Statistical test (SPSS software version 11.5) was used to 
test if there are differences in ion release between two 
groups of nanorods having the same ratio of silver to cop-
per; lithium-based NRs and lithium free NRs. Skewness 
values for indicate the non-symmetry for the distribu-
tions of all the released ions.

The null hypothesis of the Mann Whitney test is that 
the medians of the two groups are the same,

H0; median with Li = median without Li.
H1: median with Li ≠ median without Li.
If P > 0.05 hypothesis is accepted, if P < 0.05 hypothesis 

is rejected, and it can be concluded that the two groups 
are significantly different. ICP-OES data were reported 
using graphs to facilitate observation of different results.

Results
Characterization of metallic NRs using SEM/EDX
Images of the scanning electron microscope of the syn-
thesized bimetallic NRs and trimetallic NRs show rod 
shaped morphology (Fig. 2). Nanorod’s diameter was less 
than 100 nm and their lengths range from 200 to 800 nm. 
AgCu NRs and AgCuLi NRs show same morphology with 
no differential features in size or shape. Energy dispersive 
x rays (EDX) technique was used to determine the rela-
tive elemental composition in nanorods by measuring the 
intensity of the characteristic emitted X rays. The com-
ponents of the first batch of NRs are two metal colloids 
(Ag and Cu) and the other batch is made of three metal 
colloids (Ag, Cu and Li). The EDX analysis of bimetallic 
and trimetallic nanorods shows an intense silver signal 
at 3  keV and copper signals at 1 and 8  keV (Fig.  3). All 
EDX spectra obtained confirmed the presence of elemen-
tal silver and copper in examined nanorod samples, also 
proved the purity of the obtained samples of AgCu and 
AgCuLi NRs. Table  1 shows all ratio combinations of 
mixed colloidal NRs and the elemental analysis of each 
metal (EDX output). The analytical data are available as 
supplementary material (Additional file 1: Table S1).

Antibacterial activity of silver copper nanorods 
against the growth of Staphylococcus aureus
Kirby-Bauer test showed no difference between the 
different AgCu NRs with different initial ratio combi-
nations of silver and copper. At 1 mg/ml concentration 



Page 4 of 10Rawashdeh et al. BMC Research Notes           (2023) 16:23 

Fig. 1  Schematic diagram of the synthesis, characterization and biological activity of multi-metallic nanorods

Fig. 2  SEM images of the produced metallic nanorods: a Ag–Cu NRs, b Ag–Cu–Li NRs
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Fig. 3  EDX spectrum of synthesized AgCuLi NRs (a, c, e) and AgCu NRs (b, d, f) with the different combinations of silver and copper (a: Ag30 Cu60, b: 
Ag30 Cu70, c: Ag50Cu50, d: Ag50Cu40, e: Ag70Cu30, f: Ag70Cu20)

Table 1  EDX elemental composition analysis of silver and copper detected in different combination ratios of bimetallic (AgCu) and 
trimetallic (AgCuLi) NRs

AgCu NRs AgCuLi NRs

Ag:Cu ratio EDX Ag:Cu ratio EDX

NP Ag Cu Ag Cu Ag Cu Ag Cu

1 10 90 17.6 82.4 10 80 11.4 88.6

2 20 80 30.6 69.4 20 70 35.4 64.6

3 30 70 46.4 53.6 30 60 51.03 48.97

4 40 60 54.4 45.5 40 50 67.7 32.4

5 50 50 67.1 32.9 50 40 72.6 27.4

6 60 40 68.8 31.3 60 30 77.3 22.7

7 70 30 83.1 16.9 70 20 82.6 17.4

8 80 20 91 8.9 80 10 93.9 6.03

9 90 10 95.4 4.6
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trimetallic showed higher antibacterial activity than 
the bimetallic NRs. Trimetallic NRs exhibited anti-
bacterial activity against bacteria for almost all ratio 
combinations (Additional file  1: Figs. S2, S3), zone of 
inhibition was more than 10  mm for higher concen-
tration of NRs, 1 and 5  mg/ml. AgCuLi NRs at initial 
ratios of Ag30 Cu60, Ag50Cu40, and Ag70Cu20 showed 
biocidal activity at 20 µg/ml (Fig. 4).

ICP Measurements of silver and copper release from NRs 
and statistical analysis
Descriptive analysis was done for the release val-
ues of Ag and Cu after 2 h and 24 h of preparation of 
NRs suspension (Additional file  1: Table  S2). Results 
showed that more silver and copper released from 
bimetallic NRs (Fig. 5). To find out if the difference is 
significant, Mann Whitney test U test was conducted 
to evaluate the hypothesis that ion release from NRs 
with lithium is different than the release from NRs 
without Li (Table 2).

The results were significant for copper. z = − 3.791. 
P < 0.05 after two hrs, and z = −  4.167. P < 0.05 after 
24  h. Thus, there was significant difference (P < 0.05) 
in Cu ions released from NRs with and without lith-
ium, while for Ag ions there was no significant differ-
ence between NRs with and without Li (P > 0.05).

Discussion
The variation in chemistry of nanorods synthesis is 
extensive and results in differences in size, morphology, 
and performance [18]. In this study, silver copper syner-
gistically mixed at a range of ratios in bimetallic (AgCu) 
alloys and trimetallic (AgCuLi) alloys. For the metal 
salts solution, the predominant Ag entity is silver sulfate 
(Ag2SO4) which results from displacement reaction at 
room temperature. Copper and lithium ions (Cu+2 and 
Li+) are strongly soluble in water and form electrolytes.

The use of high molar concentration of sodium hydrox-
ide was important in nanorods synthesis. One of its 
reacting roles is the dissociation of low soluble silver 
sulphate at the beginning of synthesis reaction. Also, 
sodium hydroxide acts as a reducing agent for nanorods 
synthesis. It was reported in literature that AgCu NPs 
with a pH of 7 to 9 have enhanced properties and activi-
ties. The use of NaOH in the synthesis increases the pH 
of the solution, and according to a study of Kubanalievich 
et al. [21] It has been established that the most highly dis-
persed nano metals, of silver and copper, were formed in 
an alkaline medium. Also, high pH of synthesis reaction 
yields both spherical and rod-like Ag nanorods, which 
form as a result of fast reduction rate of the precursor 
[22]. A study done revealed that the higher the pH is the 
more the antibacterial efficiency is [23].

SEM micrographs of the produced NRs showed rod 
shaped because of the use of NaOH in synthesis, this 

Fig. 4  Results of Bauer Kirby method for AgCuLi NRs. The following concentrations of NRs were tested in one plate; 1, 5, 10, 20 µg/ml. Gentamicin 
is represented by g. a Represents NP3 (Ag30: Cu60) at left and NP4 (Ag40: Cu50) at right. b Represents NP5 (Ag50: Cu40) at left and NP6 (Ag60: Cu30) at 
right. c Represents NP7 (Ag70: Cu20) at left and NP8 (Ag80: Cu10) at right
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results in fast and seedless reduction reaction [24, 25]. 
Few studies revealed the bio-functional dependence of 
nanorods on shape and geometry [10, 24, 26]. A pre-
vious study showed that silver nanorods have greater 
surface area therefore showed higher antibacterial 
activity than silver nanoparticles [27]. Nanorods were 
assembled in large aggregates, such aggregates form 
because of weak Brownian motion [28]. The physio-
chemical properties of colloidal silver and copper NPs, 

particularly for systems that are made chemically, are 
well documented in literature. Their consisted param-
eters indicate their stability [29]. Previous XRD stud-
ies revealed the crystalline nature of multi-metallic 
nanoparticles such as the alloyed silver copper nano-
particles [15, 30]. Nanomaterial behavior depends sig-
nificantly on metal choice, synthesis approach and the 
applied concentration. In order to overcome cellular 
toxicity limitation, which is one of the most prominent 

Fig. 5  Differences in Cu ions release, and Ag ions release of lithium free nanorods (AgCu NRs) and of lithium-based nanorods (AgCuLi NRs), ion 
release was measured after 2 and 24 h. The top graphs for Cu ions release of AgCu NRs and AgCuLi NRs. The bottom graphs for Ag ions release of 
AgCu NRs and AgCuLi NRs

Table 2  Results of Mann Whitney U test of ion release after different times of AgCuLi NRs and AgCu NRs

a Size of the sample

Metal measured Release time 
(hrs.)

Type of metallic 
NRs

Na Sum of ranks Mean rank Mann–Whitney U Asymp. 
Sig. 
(2-tailed)

Cu 2 Tri 32 796 24.8 268.00 0.00

Bi 36 1550 43.0

24 Tri 32 765.5 23.9 237.50 0.00

Bi 36 1580.5 43.9

Ag 2 Tri 32 992.0 31.0 464.00 0.169

Bi 36 1354.0 37.6

24 Tri 32 1050.0 32.8 522.00 0.50

Bi 36 1296.0 36.0
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limitations, of the application of metal-based nano-
material, less reactive metals were selected over other 
metals for the preparation of nanorods, silver and 
copper are less reactive than zinc. Also, a working 
concentration of 20  ppm was reported to be safe and 
biocompatible.

For structural compositional analysis, energy dis-
persive x rays (EDX) is a technique used in literature 
for detecting metal percent in metallic nanorod sys-
tems [31]. Likewise, EDX was used in this work for 
compositional analysis, and it showed the presence of 
metals in all types of nanoalloys. Detected silver and 
copper contents correlate to the metallic input con-
tent, in other words, increasing metal weight percent-
age in nano powder results in higher levels of metal 
content. The produced metallic NRs, made with a 
range of elemental ratios, were tested against Staphy-
lococcus aureus. The concentration of antibacterial 
nanorods is a critical determining parameter in their 
efficacy to inhibit bacterial growth. Also, the antimi-
crobial activity of nanoparticles depends on a greater 
aspect on their size, where smaller nanoparticles have 
larger surface to volume ratio, thus they have greater 
antibacterial activity [10, 32]. Clear inhibition zone 
was detected around NRs disks indicating antibacte-
rial activity, this was recorded at a concentration of 
1 mg/ml for all types of metallic NRs. Trimetallic NRs 
showed antibacterial activity at lower concentrations.

ICP analysis revealed that lithium containing NRs are 
less prone to release metals. This observation was not 
reported in literature. The results of the current study 
provided that the degree of metal combination govern 
ion release of nano alloys. For instance, bimetallic NRs 
release more silver and coper relatively to trimetallic 
NRs. Copper ions were significantly released at higher 
level. However, trimetallic NRs exhibited higher anti-
bacterial activity than the bimetallic NRs, particularly 
at the following silver percentages: 30, 50 and 70.

Although the antibacterial effect is associated with 
ion release, silver nanorods themselves exert biocidal 
effect at more than one bio-target [33–35]. The previ-
ous results can also be attributed to the fact there are 
many anti-bacterial mechanisms exerted by nanomet-
als, and it is not necessarily associated with higher 
number of released metallic ions [12, 35]. Trimetallic 
alloys nanorods (Silver copper and lithium) were effec-
tively more toxic. This due to incorporating lithium, 
the reactive toxic element, in the nano metallic mix. 
Lithium nanorods rendered more toxicity on bacteria. 
The compromised dual antibacterial mechanisms, via 
metal ions and the dynamic toxic nanorods, mediate 
toxicity of nano metallic nanorods.

Conclusions
Bimetallic (AgCu) and trimetallic (AgCuLi) nanoalloys 
were synthesized using one step co-reduction method. 
Bacteria used in this study were more susceptible to 
lithium containing nanoalloys at a concentration as 
low as 20 µg/ml, at the following metallic ratios of sil-
ver copper; (Ag30:Cu60), (Ag50:Cu40), and (Ag70: Cu20). 
Multi-metallic composition of the prepared nanorods 
denotes heterogeneity in their antibacterial mechanism. 
Also, results revealed that the more powerful antibac-
terial lithium-containing nanorods were less prone to 
release metals, this indicates that the basis of antibac-
terial effectiveness depends not only on ion release but 
also on the synergistic effect of the interacting mixed 
nanorods. Our results suggest that the toxic impact of 
nanoparticulate systems depends on structural hetero-
geneity which stem from the difference and arrange-
ment of the elemental constituents.

Limitations
Many techniques could be used to provide full charac-
terization of the chemical and physical properties of the 
synthesized nanorods. Zeta potential and X ray diffrac-
tion are techniques used respectively to measure surface 
charge and the crystal structure of nanorods.
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