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it has the potential to cause severe disease [2]. Methicil-
lin-resistant staphylococci of the intermedius group (SIG) 
emerged in canines in 1999 [3], and S. pseudintermedius 
was first described in 2005 [4]. Methicillin-resistant S. 
pseudintermedius (MRSP) has been spreading world-
wide through the expansion and dissemination of domi-
nant clonal lineages with specific genetic characteristics, 
including the sequence type (ST) 71 in Europe, ST68 in 
North America and ST45/ST112 in Asia [5, 6]. The first 
infection of MRSP in humans was reported in 2006 in 
Belgium [7] and the first MRSP isolated from a human 
patient in Argentina was reported in 2020 [8]. Further-
more, dominant clones are multi-drug resistant (MDR), 
suggesting that the spread of horizontally transferrable 

Introduction
Staphylococcus pseudintermedius is an important oppor-
tunistic pathogen in canine companions and is commonly 
associated with skin infections [1]. This bacterium is spo-
radically associated with human infections because it can 
be transmitted easily via close contact with animals, and 
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Abstract
Staphylococcus pseudintermedius is an opportunistic pathogen commonly associated with skin infections in dogs. 
Twenty-three methicillin-resistant S. pseudintermedius (MRSP) isolated in Argentina from dogs with pyoderma were 
analyzed using whole genome sequencing (WGS) and classified into sequence types (ST) by multilocus sequence 
typing (MLST) and staphylococcal chromosome cassette mec (SCCmec) types.

Based on the WGS analysis, MLST, and SCCmec type results, we report for the first time in Argentina two 
MRSP strains, one each, belonging to ST71-SCCmec III and ST45-ΨSCCmec57395 from dogs with pyoderma. We 
also identified seven isolates with ST339, which had been previously reported in only two isolates in Argentina. 
Additionally, we identified ten MRSP isolates harboring variants of the SCCmec V found in S. aureus, seven SCCmec 
V (5C2&5) with two ccrC1 recombinases, and three SCCmec V (5C2) with one ccrC1 recombinase.

Our findings provide important insights into the evolution and geographic spread of these hypervirulent 
dominant clones that threaten the health of our companion animals and represent a significant risk for zoonotic 
infections.
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resistance genes is a contributing factor for the dissemi-
nation of certain sequence types [9].

Antimicrobial resistance patterns differ in the three 
most prevalent MRSP clonal lineages [5]. Clonal com-
plexes (CCs) are groups of sequence types (STs) sharing 
at least six identical alleles of the seven S. pseudinterme-
dius MLST genes (ack, cpn60, fdh, pta, purA, sar, and 
tuf), with the primary founder being the ST with the larg-
est number of single locus variants (SLVs) and all other 
strains diverge from the predicted clonal ancestor [10]. 
MRSP belonging to clonal complexes CC71 and CC68 
often contain several genes that confer resistance to mul-
tiple antimicrobials in addition to the mecA gene located 
within the SCCmec cassette [11, 12]. For CC45, isolates 
often harbor resistance genes and mutations that make 
them resistant to almost all antimicrobials used in veteri-
nary medicine [13].

In 2010, the global population structure of MRSP grad-
ually started to change and it became more heterogenous 
than previously described, with evidence of dissemina-
tion through clonal expansion of MRSP dominant lin-
eages over large distances [14]. In Europe, there was an 
apparent decrease of ST71 [6, 15, 16] with the emergence 
of two novel MRSP lineages (ST258 and ST496) of Euro-
pean and Australian origin [6, 17]. Likewise, ST71 clones 
began to spread worldwide over more distant locations 
and this clone has now been reported in Asia and in 
North and South America, with high prevalence in many 
countries in these regions. This change in the global 
population structure of S. pseudintermedius may be the 
consequence of importation from other countries due to 
the mobilization of animals and people across geographi-
cal locations [9, 18, 19]. In other parts of the world, the 
MRSP population appears to be more diverse. In Argen-
tina, the MRSP population consists of genetically distinct 
STs not closely related to the more prevalent ST71 and 
ST68 lineages [20].

Staphylococcal chromosome cassette mec (SCCmec) 
typing is one of the molecular techniques currently used 
to understand the epidemiology and the clonal relation-
ships of methicillin-resistant S. aureus (MRSA) strains 
[21]. Consequently, SCCmec typing for S. pseudinter-
medius has been progressively adapted from the work 
done for S. aureus. Existing reports of S. pseudinterme-
dius SCCmec type III (previously described as II-III by 
Descloux et al. [22]) associated it with the European epi-
demic clone ST71, and ΨSCCmec57395 was significantly 
associated with ST45 [5, 11, 13]. To date, no knowledge 
exists regarding S. pseudintermedius belonging to the 
ST71 and ST45 clones in Argentina. Here we report 
for the first time in Argentina ST71-SCCmec III and 
ST45-ΨSCCmec57395.

Main text
Methods
Isolate selection  Thirty S. pseudintermedius isolates 
from dogs with pyoderma collected during 2016 from the 
Buenos Aires Metropolitan Area (Ciudad Autónoma de 
Buenos Aires, Gran Buenos Aires and La Plata, Argen-
tina) were selected randomly from the strain collection 
of the Laboratory of Bacteriology and Antimicrobials, 
Department of Microbiology, Faculty of Veterinary Sci-
ences, National University of La Plata, Argentina (Labora-
torio de Bacteriología y Antimicrobianos, Departamento 
de Microbiología, Facultad de Ciencias Veterinarias, 
Universidad Nacional de La Plata, Argentina). Identifica-
tion was confirmed by MALDI-TOF and whole genome 
sequencing (WGS) at the National Veterinary Services 
Laboratories (NVSL) in Ames, Iowa, U.S.A. Twenty-three 
S. pseudintermedius isolates were identified as methi-
cillin-resistant (MRSP) due to the presence of the mecA 
gene, which encodes methicillin resistance, through WGS 
analysis (described below).

Whole genome sequencing and genomic analy-
sis  Sequencing was performed with the Illumina MiSeq 
platform using 2 × 250 paired-end chemistry and the 
NexteraXT library preparation kit. Multilocus sequence 
typing (MLST) was determined using ABRicate (https://
github.com/tseeman/abricate/) with the S. pseudinterme-
dius PubMLST database, and new alleles and sequence 
types (STs) were submitted to PubMLST (http://pubmlst.
org/spseudintermedius) for curation and number desig-
nation by Vincent Perreten (vincent.perreten@vetsuisse.
unibe.ch). SCCmec types were determined using SCC-
mecFinder 1.2 [23] (https://cge.food.dtu.dk/services/
SCCmecFinder-1.2/), a database with SCCmec types I 
through XII, including SCCmec IV and V subtypes (as of 
the preparation of this manuscript), based on those iden-
tified in S. aureus. For the predicted SCCmec types III and 
V, additional manual alignment/mapping was performed 
using the available reference sequences for these SCCmec 
types for S. aureus and S. pseudintermedius (AB03671.1, 
AM904732.1 for SCCmec type III; HE984157.2 for 
ΨSCCmec57395; and FJ544922.1, ERR175868, AB512767.1, 
AB505629.1, AB462393.1, AB121219.1 for SCCmec type 
V), using Geneious Prime v11.0.9 (Biomatters Ltd., NZ).

Results
For the 23 MRSP isolates analyzed, a total of 14 sequence 
types (STs) were identified, five previously described: 
ST339 (n = 7), ST1412 (n = 3), ST71 (n = 2), ST45 (n = 1) 
and ST313 (n = 1); and nine newly identified STs (Table 1).

SCCmecFinder successfully classified twelve isolates 
as SCCmec type IIIa (n = 2), SCCmec type V (5C2) (n = 3) 
and SCCmec type V (5C2&5) (n = 7). The remainder of 
the isolates could not be typed.

https://github.com/tseeman/abricate/
https://github.com/tseeman/abricate/
http://pubmlst.org/spseudintermedius
http://pubmlst.org/spseudintermedius
https://cge.food.dtu.dk/services/SCCmecFinder-1.2/
https://cge.food.dtu.dk/services/SCCmecFinder-1.2/
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The two isolates classified as SCCmec type III belonged 
to ST71. These were mapped against the S. pseudinter-
medius KM1381 (AM904732.1) genome reference that 
harbors a hybrid SCCmec type II-III, described to be a 
combination of SCCmec II from S. epidermidis and SCC-
mec III from S. aureus, but lacking the cadmium resis-
tance operon [22]. Both isolates showed high homology 
(99.9%) to this reference (Fig. 1A).

For one isolate identified as ST45,a SCCmec type could 
not be determined using SCCmecFinder, but alignment/
mapping to HE984157.2 resulted in high homology 
(98.8%) classifying it as ΨSCCmec57395 (Fig. 1B).

Of the SCCmec type V, three were predicted as SCC-
mec type V (5C2), with only one ccrC1 recombinase, 
and seven were predicted as SCCmec type V (5C2&5), 
with two ccrC1 recombinases. When these 10 isolates 
were compared against SCCmec V subtype references 
(Va, Vb and Vc), isolates with SCCmec type V (5C2) (BI-
1991, BI-2002, BI-2008) showed 79.4–90.6% homology 
to the S. aureus type Va (5C2) reference strain. The rest 
showed 84.8–99.8% homology to S. pseudintermedius 
06-3228 (FJ544922.1) and S. pseudintermedius 23,929 
(ERR175868), which are both references for S. pseudin-
termedius SCCmec V (5C2&5) [12, 24]. We classified five 
of these isolates as SCCmec Vb due to their homology 
with S. aureus AB462393.1 (Vb). Furhtermore, two of 
these SCCmec Vb (BI-1980, BI-1990) showed evidence of 
harboring a truncated mecR1 gene. Finally, we classified 
two isolates (BI-1991, BI-2003) as SCCmec Vc (5C2&5) 
because they harbored the czrC gene that is present in 
the SCCmec Vc but is absent in Vb. (Figure 1C, D and E).

Discussion
This study is the first report of S. pseudintermedius 
ST71-SCCmec III and ST45-ΨSCCmec57395 in Argen-
tina, obtained from a cohort of isolates recovered from 
dogs with pyoderma in the Buenos Aires Metropolitan 

Area in 2016. A previous study in Argentina described a 
population of MRSP from dogs with clinical disease that 
consisted of six genetically distinct STs: ST339, ST649, 
ST919, ST920, ST921, and ST922 [20]. Here, among 23 
MRSP, ST339 (n = 7) was also identified, as well as an 
additional thirteen sequence types, including ST1412 
(n = 3), ST71 (n = 2), ST45 (n = 1), ST313 (n = 1) and nine 
newly identified STs (ST2233-2237, ST2242-2244 and 
ST2261). These data contribute to the characteriza-
tion of the population structure of MRSP in Argentina, 
which now includes two globally prevalent clones (ST71 
and ST45). ST71 was initially described as the pre-
dominant clone in Europe but is now spread worldwide, 
whereas ST45 was described as the most prevalent clone 
in Asia [5]. Gagetti et al. [20] identified two isolates with 
sequence type ST339 in Argentina. The first MRSP recov-
ered from a human patient in Argentina was ST1412 [8]. 
Interestingly ST1412 is a double locus variant of ST45, 
the sequence type that originated in Asia.

The ST71 clone has mainly been associated to SCCmec 
type III [11]. This SCCmec, first identified in 2005, was 
initially classified as a hybrid SCCmec II-III [22]. The dis-
tribution of this clone was primary found in Europe, but 
is now disseminated worldwide [23, 25]. The first report 
of an ST71 MRSP in South America was from a dog in 
Brazil in 2013 [26] and this study is the first report of this 
clone in Argentina. As in previous reports, the two iso-
lates identified in this study as ST71 harbored SCCmec 
type III.

Pseudo (Ψ) SCCmec elements have been identified in 
S. haemolyticus with no evidence of ccr genes, but with 
a mec complex [27, 28]. A novel ΨSCCmec57395 was 
described in MRSP CC45 from companion animals in 
Thailand and Israel [13]. In Australia, MRSP belonging 
to ST45 was also associated to this novel ΨSCCmec57395 
element [18]. Even though no particular SCCmec type 
is usually associated to MRSP-ST45 [25, 29], some 
reports identified ΨSCCmec57395 with this clone [13, 
18]. The results from this study show evidence to also 
classify the MRSP-ST45 isolate from Argentina as an 
ST45-ΨSCCmec57395, making this the first report of this 
element in the country.

Lastly, almost half (10/23) of the isolates were predicted 
as SCCmec V. SCCmec V has been associated to different 
STs [5], and variation has been observed in SCCmec type 
V for S. pseudintermedius in comparison to S. aureus. 
Currently, this element is classified into three subtypes 
for S. aureus, according to Uehara [30]: Va (5C2), Vb 
(5C2&5) and Vc (5C2&5). To provide clarity, it’s impor-
tant to mention how the classification for subtype Vb has 
evolved. Initially, it was classified as VT (AB462393.1) 
[31]. Later, Black et al. [12] described a homologous SCC-
mec type V element in S. pseudintermedius (FJ44922.1), 
which only differed in a deleted section of a gene in S. 

Table 1  Multilocus sequence types (MLST) and SCCmec types 
of methicillin resistant Staphylococcus pseudintermedius isolates 
obtained from dogs with pyoderma in Argentina
MLST SCCmec type
ST339 (n = 7) SCCmec V (5C2) (in only 2 

isolates)

ST1412 (n = 3) SCCmec V (5C2&5)

ST71 (n = 2) SCCmec III (previously 
described as II-III)

ST45 (n = 1) ΨSCCmec57395

ST313 (n = 1) none

Newly identified

ST2233 (n = 1), ST2234 (n = 1), ST2235 
(n = 1), ST2242 (n = 1)

SCCmec V (5C2&5)

ST2261 (n = 1) SCCmec V (5C2)

ST2243 (n = 1), ST2244 (n = 1), ST2236 
(n = 1), ST2237 (n = 1)

none
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Fig. 1   A, Alignment of S. pseudintermedius BI-1983 and BI-1985 SCCmec elements to S. pseudintermedius KM1381 (AM904732, first described as hybrid 
II-III) and S. aureus 85/2082 (AB037671.1, SCCmec III). B, Alignment of BI-1989 to S. pseudintermedius 57,395 (HE984157.2, ΨSCCmec57395). C, Alignment 
of SCCmec V (5C2) predicted elements for BI-1991, BI-2002 and BI-2008 to S. aureus SCCmec Va (5C2) [AB121219.1]. D, Alignment of SCCmec Vb (5C2&5) 
predicted elements for BI-1979, BI-1980, BI-1984, BI-1990, and BI-2004 to S. aureus Vb (5C2&5) [AB462393.1; AB512767.1] and S. pseudintermedius SCCmec 
VT (FJ544922.1). E. Alignment of SCCmec Vc (5C2&5) predicted elements BI-1981 and BI-2003 to S. aureus Vc (5C2&5) [KM369884].
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pseudintermedius with respect to S. aureus. Then, Takano 
et al. [32] proposed reclassification of Vb to as SCCmec 
type VII. Finally, Perreten et al. [11], described an SCC-
mec V in S. pseudintermedius that was highly homolo-
gous to the previously named VT or VII from S. aureus, 
which was designated as SCCmec V (5C2&5). In this 
study, three MRSP isolates, belonging to ST339, showed 
one ccrC1 recombinase only and were most homologous 
to SCCmec V (5C2). In contrast, the remaining seven 
MRSP isolates showed two ccrC1 recombinases and were 
most homologous to SCCmec V (5C2&5). Additionally, 
there was evidence to suggest that the mecR1 gene was 
truncated in two of these isolates (BI-1979 and BI-1980). 
Worthing et al. [18] reported similar results for the SCC-
mec VT identified in their study. Prior to our study, SCC-
mec V (5C2&5) was the only SCCmec type reported in 
MRSP in Argentina [20].

Conclusion
Using whole-genome sequencing we identified two 
MRSP isolates, one belonging to sequence type 71 and 
carrying staphylococcal cassette chromosome mec 
type III (ST71-SCCmec III), and the other belonging 
to sequence type 45 and carrying the ΨSCCmec57395 
(ST45-ΨSCCmec57395), neither of which had been previ-
ously reported in Argentina. Even though these sequence 
types were first identified and distributed in Europe 
and Asia, respectively, our results support the current 
worldwide spread observed for these S. pseudintermeius 
clones. These findings highlight the importance of WGS 
for understanding the circulating populations of MRSP 
and the spread of multidrug-resistant S. pseudinterme-
dius in companion animals, which can consequently have 
a significant impact on public health.

Limitation
 	• Complete fragment coverage of the SCCmec 

elements was limited due to the inevitable gaps 
present in assemblies from short read technology, 
therefore fully closed genomes were not available.

 	• There are inconsistencies in the literature regarding 
nomenclature and classification of SCCmec 
elements, which makes interpretation and 
comparative analysis more complex.

 	• There is an evident need for a formal SCCmec 
nomenclature that includes SCCmec elements 
from Staphylococcus pseudintermedius and other 
Staphylococcus species.
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