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Abstract
Objective  Tomatoes are the most widely consumed fruit vegetable and are relatively easy to cultivate. However, 
an increase in temperature causes some plants to respond with a decrease in fruit production. So, it is necessary to 
develop plants resistant to extreme temperature changes. The tomato cv. Micro-Tom has genetic variations in the 
gene of INDOLE-ACETIC-ACID, namely SlIAA9-3 and SlIAA9-5. However, the genetic information regarding the full-
length transcript of the gene from this type of tomato plant is unknown. Therefore, this study aimed to determine the 
full-length transcript of the genes of these three types of tomatoes using long-reads sequencing technology from 
Oxford Nanopore.

Data description  The total RNA from three types of Micro-Tom was isolated with the RNeasy PowerPlant Kit. Then, 
the RNA sequencing process used PCR-cDNA Barcoding kit - SQK-PCB109 and continued with the processing of 
raw reads based on the protocol from microbepore protocol (https://github.com/felixgrunberger/microbepore). 
The resulting raw reads were 578 374, 409 905, and 851 948 for wildtype, iaa9-3, and iaa9-5, respectively. After 
obtaining cleaned reads, each sample was mapped to the tomato reference genome (S. lycopersicum ITAG4.0) with 
the Minimap2 program. In particular, 965 genes were expressed only in the iaa9-3 mutant, and 2332 genes were 
expressed only in the iaa9-5 mutant. Whereas in the wild type, 1536 genes are specifically expressed. In cluster 
analysis using the heatmap analysis, separate groups were obtained between the wild type and the two mutants. This 
proves an overall difference in transcript levels between the wild type and the mutants.
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Objective
Micro-Tom is a cultivar of a tomato that is affected by a 
mutation in the IAA9 gene, which IAA9 is a family mem-
ber of Auxin/IAA (Indole-Acetic-Acid) transcription 
factors (T.F.) in tomato. The main role of this gene is for-
mation in fruit-set. This antisense technology in the plant 
using AS-IAA9 shows several developmental defects, 
including strong parthenocarpy behavior related to IAA 
[1]. Some advantages of this mutant are higher produc-
tion or yield in fruits, and it can survive under drought 
stress conditions [2].

Micro-Tom is small in size, has rapid growth and life 
cycle, easy transformation, and a short life cycle for fruit 
harvest [3], making Micro-Tom a convenient model for 
research in different fields. Several studies have been 
conducted on tomato genetics, like hormonal functions 
and interactions, carbohydrate metabolism, amino acids 
metabolism, and molecular breeding of tomato fruit 
shelf-life. The phenotype of Micro-Tom is due to at least 
three mutations, one of them is a dwarf (internode length 
reduction and smaller, rugose, dark-green leaves produc-
tion) [4].

Data description
A total of three RNA libraries (wild type, SlIAA9-3, 
SlIAA9-5) were prepared and sequenced (Data set 1, 
https://ddbj.nig.ac.jp/resource/sra-study/DRP009326). 
RNA-seq was performed using MinION ONT (Oxford 
Nanopore Technologies). Transcriptome sequenc-
ing had an estimated read of 578 374, 409 905, and 851 
948 for wild type, SlIAA9-3, and SlIAA9-5, respectively. 
The results of sequencing and pre-processing are sum-
marized in Data file 1 (Table  1, https://doi.org/10.6084/
m9.figshare.21701345). After obtaining cleaned reads, 

each sample was mapped to the tomato reference 
genome (S. lycopersicum ITAG4.0) with the Minimap2 
program. In particular, 965 genes were expressed only 
in the iaa9-3 mutant, and 2332 genes were expressed 
only in the iaa9-5 (Data file 2, https://doi.org/10.6084/
m9.figshare.21701354). In cluster analysis using the heat-
map method, separate groups were obtained between the 
wild type and the two mutants (Data file 3, https://doi.
org/10.6084/m9.figshare.21701357).

The total RNA from young leaves was extracted using 
the RNeasy PowerPlant Kit (Qiagen) following the man-
ufacturer’s protocol. The quality and quantity of RNA 
were checked by Nanophotometer NP-80 (Implen) and 
Qubit™ RNA Broad Range (B.R.) assay on Qubit® Fluo-
rometer (Invitrogen). Then, the total RNA was subjected 
to RNA sequencing using PCR-cDNA Barcoding kit - 
SQK-PCB109 (PCB_9092_v109_revB_10Oct2019) [5]. 
The sequencing was performed on a Flow Cell R9.4.1 
(FLO-MIN106D) on MinION Mk1B. After sequencing, 
the raw reads were base called using Guppy 6.1.2 with 
default parameters [6]. Next, data pre-processing fol-
lowed https://github.com/felixgrunberger/microbepore 
protocol includes demultiplexing and NanoStat v1.2.1 to 
assess the reads quality and reads’ statistics [5, 7]. Next, 
full-length reads with remaining SSP (strand-switch-
ing primer) and VNP (oligo-dT30VN) primers were 
identified using pychopper v2.5.0 (https://github.com/
nanoporetech/pychopper). Then, polyA-tails and the 
remaining SSP adapters were removed using Cutadapt 
[8]. The cleaned reads were mapped to the public tomato 
reference genome (S. lycopersicum ITAG4.0) using Mini-
map2 [6, 9]. To estimate gene abundance in each sample, 
the mapped-clean reads were calculated in alignment-
based mode using salmon v1.9.0 [10]. Finally, transcripts 
per million (TPM) from each treatment were compared 
using clustering analysis by using RStudio 4.1.2 version 
[11] with some packages; gplots, cluster, and heatmap2.

Limitations
This study had limitations in obtaining a good-quality 
total RNA without degradation and fragmentation dur-
ing library construction. In addition, the heat stress treat-
ment which stresses makes the plant difficult to survive 
in high heat conditions.
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Table 1  Overview of data files/data sets
Label Name of data file/data 

set
File types 
(file 
extension)

Data repository and 
identifier (DOI or ac-
cession number)

Data 
set 1

Raw RNA-seq reads Fastq files 
(.fastq)

https://ddbj.nig.ac.jp/
resource/sra-study/
DRP009326 [12]

Data 
file 1

Summary of raw and 
clean reads and tran-
scriptome assembly

Document 
file (.docx)

https://doi.
org/10.6084/
m9.figshare.21701345 
[13]

Data 
file 2

Venn diagram for com-
parison of the number of 
expressed genes in wild 
type, iaa9-3 and iaa9-5 
mutants

png file 
(.png)

https://doi.
org/10.6084/
m9.figshare.21701354 
[14]

Data 
file 3

Clustering analysis of 
gene abundance estima-
tion using Heatmaps 
based on de novo as-
sembled transcript

png file 
(.png)

https://doi.
org/10.6084/
m9.figshare.21701357 
[15]
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