RESEARCH NOTE

Open Access

CD33 as a leukocyte-associated marker expressed on human spermatozoa

Nasrin Sereshki¹, Mitra Rafiee^{2*}, Razieh Alipour¹, Kourosh Rahimyan³ and David Wilkinson⁴

Abstract

Objective Sialic acid-binding immunoglobulin-type lectins (Siglecs) are commonly present on immune cells and often mediate cell-to-cell interactions and signaling. Studies have shown the presence of Siglecs 1, 2, 5, 6, 10 and 14 on human spermatozoa. To the best of our knowledge, the expression of CD33 on spermatozoa has not yet been studied. Semen samples were collected from 25 healthy men with normal semen status. CD33 expression on purified spermatozoa was evaluated by flow cytometry methods.

Results The results demonstrate the expression of CD33 on the surface of purified spermatozoa. The mean (\pm SD) of MFI (mean fluorescence intensity) was 12.85 (\pm 1.33) and the mean percentage of spermatozoa that express CD33 was 73.75 (\pm 3.75). Results were obtained showing that spermatozoa express CD33 (or Siglec-3) on their surface. The physiological role of these molecules on spermatozoa remains to be determined. It is recommended that further research be undertaken regarding the role of Siglecs (such as CD33) on spermatozoa apoptosis.

Keywords Spermatozoa, CD33, Siglecs

Introduction

Sialic acid is an essential component of the spermatozoa glycocalyx and is involved in functions of spermatozoa including motility, migration and interaction with cumulus-oocyte complex (COC) [1]. Sialic acids that bind to the end of glycans on the surface of cells and secrete glycoconjugates to form sialoglycans are ligands for sialic acid-binding immunoglobulin-like lectins (Siglecs) [2, 3].

Siglecs are immunoglobulin-type transmembrane proteins and comprise; (a) V-set domain (sialic acid-binding

*Correspondence:

²Department of Immunology, Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran

³Department of Microbiology, Faculty of Medicine, Shahid Beheshti

⁴University of Aberdeen, Scotland, UK

N-terminal), (b) C2-set domain (variable numbers of Ig domains), (c) a transmembrane region and (d) a cytosolic tail [1]. Siglecs are commonly present on immune cells and often mediate cell-to-cell interactions and signaling [4–6]. They transmit inhibitory or activating signals based on possessing ITIM or ITAM on the cytosolic tail [4–6]. Siglecs bind to their ligands expressed on other cells (in trans) in order to communicate with neighboring cells and also interact with ligands expressed on the same cell (in cis) [7].

There are two primary subsets of Siglecs based on their sequence similarities and evolutionary conservation; (a) conserved Siglecs, including Siglecs 1, 2, 4 and 15 and (b) rapidly evolved Siglecs, including Siglec-3 (CD33) in humans and Siglecs 5, 6, 7, 8, 9, 10, 11, 14 and 16 [3]. One of the main roles of some of these receptors is the fertilization process [1, 8, 9]. Studies have shown the presence of Siglecs 1, 2, 5, 6, 10 and 14 on human spermatozoa [1].

© The Author(s) 2023. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Mitra Rafiee

rafiee64mitra@gmail.com

¹Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

University of Medical Sciences, Tehran, Iran

To the best of our knowledge, the expression of CD33 on spermatozoa has not yet been studied. CD33 preferentially binds to α 2-6- and α 2-3-sialylated glycans on the surface of normal and leukemic cells [7, 10]. CD33 is mostly expressed on myeloid cells and on some lymphoid cells, such as NK cells [7]. Studies have shown that CD33 is an inhibitory receptor and therefore has a role in immune regulation [11]. We discovered that CD33 expresses on spermatozoa following inadvertently pouring anti-CD33 antibody (instead of the intended antibody) during an experiment on a semen sample. Therefore, this study seeks to address CD33 expression on the surface of human spermatozoa. The results of this study can be beneficial regarding the use of spermatozoa as a model to study the biological function of CD33 molecule.

Methods and materials

Subjects

Twenty-five healthy volunteers aged 25–56 years entered the study. Semen samples were collected by masturbation after 2–3 days of sexual abstinence. After semen analysis according to WHO standard guidelines (WHO, 2010), samples with normal quality (according to WHO reference intervals for values of semen parameters) were selected for the assessment of CD33 expression. Informed consent was obtained from all subjects who participated in this study. The protocol for this study was approved by the Ethics Committee of Isfahan University of Medical Sciences (Isfahan, Iran). The ethics committee approval letter number is IR.MUI.REC.1395.3.480.

Purification of spermatozoa

Density-gradient centrifugation technique was used for purification of spermatozoa. The procedure of purification is described in more detail elsewhere [12]. In brief, 1ml of the spermatozoa suspension was carefully layered over a discontinuous gradient made by AllGrad 95% and 45%. After centrifugation at 400 g for 18 min, the spermatozoa pellet at the bottom of the centrifuge tubes was washed and re-suspended in AllGrad Wash. The purified spermatozoa were assessed by microscopic visualization for lack of non-spermatozoa cell contamination and viability.

Flow cytometry

The presence of CD33 on the surface of spermatozoa was measured by direct immunofluorescence using a BD FACS Calibur (BD Biosciences, USA) flow cytometer. 1×10^6 spermatozoa were stained with phycoerythrin (PE) mouse anti-human CD33 (clone: MCD5, IQ Products, Groningen, Netherlands) at room temperature for 30 min and then run on flow cytometry. Data from 100,000 events were collected using Cell Quest software

(Becton Dickinson). Antibody titration was performed and the optimal titer with the minimal background was selected. Unstained control was used as a negative control. Cell viability tests were not performed because abnormal and dead spermatozoa were removed by All-Grad solution before staining. FlowJo software version X was used for the data analysis.

Results

CD33 expression on spermatozoa was evaluated by flow cytometric assay. A logarithmic mode of the side scatter (SSC) parameter versus a liner mode of the forward scatter (FSC) parameter was used to detect spermatozoa and a fitting gate was set around them. The corresponding histogram was used to determine the expression of CD33. The results demonstrate the expression of CD33 on the surface of purified spermatozoa (Fig. 1). The mean (\pm SD) of MFI (mean fluorescence intensity) was 12.85 (\pm 1.33) and the mean percentage of spermatozoa that express CD33 was 73.75 (\pm 3.75).

Discussion

CD33 (Siglec-3) is an inhibitory sialoadhesin receptor that is expressed by human leukocytes [6, 11] and has major roles in the regulation of these cell functions. Interestingly, this study revealed that CD33 (as a leukocyte marker) is expressed on the surface of human spermatozoa. We could not find any study in agreement with, or contrary to, our result and, to the best of our knowledge, this is the first time that the expression of CD33 on spermatozoa has been demonstrated.

The role of other Siglecs expressed on spermatozoa has been studied. It has been determined that the interaction of Siglecs and sialic acids on spermatozoa and the cumulus-oocyte complex (COC) plays the main role in regulating the process of fertilization and embryo development [1, 9, 13].

An in vitro study showed that removing sialic acid from spermatozoa resulted in decreased motility and mucus penetration, but increased zona pellucida binding and polyspermy [1]. Given the currently known functions and structure of Siglects, one can also suppose that Siglecs, including CD33, on spermatozoa may bind to cis ligands (bind to sialic acids on spermatozoa) and lead to the transmission of signals that govern and regulate spermatozoa functions such as motility, penetration, capacitation and acrosome reaction. Obviously, further well-designed studies should be done to confirm or reject this hypothesis.

Studies have shown that CD33 related Siglecs (rapidly evolved Siglecs mentioned in the Introduction) can induce apoptosis [2]. Apoptosis is a process in which the contents of the cell are wrapped into a small package of membrane that these apoptotic bodies are removed by

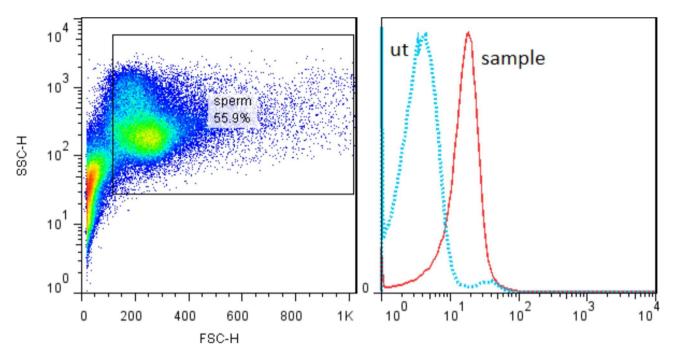


Fig. 1 Representative flow cytometry gating plots and histogram of unstained (ut) control and sample. Unstained control was used to differentiate the negative and positive population

immune cells without induction of inflammation [14]. Previous studies have shown that the crosslinking of CD33 by monoclonal antibody induces apoptosis in AML cells and inhibits the in vitro proliferation of both normal myeloid cells and chronic myeloid leukemia [15]. Additionally, we know from the litreature that spermatozoa apoptosis is essential to remove DNA-damaged cells and prevent the fusion of these damaged cells with oocyte [16]. Thus, the investigation of the probable role of Siglecs (such as CD33) in spermatozoa apoptosis could be an intriguing subject for future researches in this field. It is recommended that further research should be undertaken regarding the role of Siglecs (such as CD33) on spermatozoa apoptosis.

Conclusion

We present data from antibody labeled FACS showing that spermatozoa express CD33 (or Siglec-3) on their surface. The physiological role of this molecule on spermatozoa remains to be determined. It is recommended that further research should be undertaken regarding the role of Siglecs (such as CD33) on spermatozoa apoptosis.

Limitations

There were some limitations in this study that are suggested for improving future studies. These limitations include 1 In our study we didn't use Real-time PCR so we can't understand whether spermatozoa absorbed CD33 from the environment or it is expressed by itself.

2 Limitation in sample size 3 No comparison of normal samples with abnormal samples.

Acknowledgements

The authors would like to thank Mohadeseh Thogyani and Faezeh Abbasi Rad for their valuable insight and recommendations and for their contribution in briefing the volunteers and obtaining their informed consent.

Author contributions

N.S.; Designed and performed experiments, analysed data and co-wrote the paper, M.R.; Performed experiments and co-wrote the paper and supervised the research, R.A.; Performed experiments, co-wrote the paper, K.R.; co-wrote the paper, D.W.; co-wrote, reviewed and edited the paper and. All authors contributed to the final manuscript.

Funding

This study is financially supported by the authors.

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

The authors assert that all procedures contributing to this work comply with the Helsinki Declaration of 1975, as revised in 2008 and with the ethical standards of the relevant national and institutional committees on human experimentation; the protocol for the study was approved by the Ethics Committee of Isfahan University of Medical Sciences. The ethics committee approval letter number is IR.MUI.REC.1395.3.480. Written informed consent was obtained from all subjects who participated in this study,

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Received: 13 October 2022 / Accepted: 5 April 2023 Published online: 20 April 2023

References

- Fernandez-Fuertes B, Blanco-Fernandez A, Reid CJ, Meade K, Fair S, Lonergan P. Removal of sialic acid from bull sperm decreases motility and mucus penetration ability but increases zona pellucida binding and polyspermic penetration in vitro. Reproduction. 2018;155(6):481–92.
- 2. Crocker PR, Redelinghuys P. Siglecs as positive and negative regulators of the immune system. Portland Press Ltd.; 2008.
- Varki A. Natural ligands for CD33-related siglecs? Oxford University Press; 2009.
- Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol. 2007;7(4):255–66.
- Crocker PR, Varki A. Siglecs, sialic acids and innate immunity. Trends Immunol. 2001;22(6):337–42.
- 6. Pillai S, Netravali IA, Cariappa A, Mattoo H. Siglecs and immune regulation. Annu Rev Immunol. 2012;30:357–92.
- Hernández-Caselles T, Martínez Esparza M, Pérez Oliva AB, Quintanilla -Cecconi AM, García - Alonso A, Alvarez - López DMR, et al. A study of CD33 (SIGLEC - 3) antigen expression and function on activated human T and NK cells: two isoforms of CD33 are generated by alternative splicing. J Leukoc Biol. 2006;79(1):46–58.
- Alkhodair K, Almhanna H, McGetrick J, Gedair S, Gallagher M, Fernandez-Fuertes B, et al. Siglec expression on the surface of human, bull and ram sperm. Reproduction. 2018;155(4):361–71.

- Ma F, Wu D, Deng L, Secrest P, Zhao J, Varki N, et al. Sialidases on mammalian sperm mediate deciduous sialylation during capacitation. J Biol Chem. 2012;287(45):38073–9.
- Walter RB, Appelbaum FR, Estey EH, Bernstein ID. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood. 2012;119(26):6198–208.
- Hernández-Caselles T, Miguel RC-S, Ruiz-Alcaraz AJ, García-Peñarrubia P. CD33 (Siglec-3) inhibitory function: role in the NKG2D/DAP10 activating pathway. Journal of immunology research. 2019;2019.
- Sereshki N, Andalib A, Ghahiri A, Mehrabian F, Sherkat R, Rezaei A, et al. The expression of human leukocyte antigen by human ejaculated spermatozoa. Mol Genet Genom Med. 2019;7(12):e1005.
- 13. Tecle E, Reynoso HS, Wang R, Gagneux P. The female reproductive tract contains multiple innate sialic acid-binding immunoglobulin-like lectins (Siglecs) that facilitate sperm survival. J Biol Chem. 2019;294(31):11910–9.
- Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9(3):231–41.
- Vitale C, Romagnani C, Puccetti A, Olive D, Costello R, Chiossone L et al. Surface expression and function of p75/AIRM-1 or CD33 in acute myeloid leukemias: engagement of CD33 induces apoptosis of leukemic cells. Proceedings of the National Academy ofSciences. 2001;98(10):5764-9
- 16. Nakidkina A, Kuzmina T. Apoptosis in Spermatozoa and its role in deteriorating Semen Quality. Russian J Dev Biology. 2019;50(4):165–72.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.